Summary

Kontrollera flödeshastigheter av Mikrotubule-baserade 3D aktiva vätskor med temperatur

Published: November 26, 2019
doi:

Summary

Målet med detta protokoll är att använda temperatur för att kontrollera flödeshastigheterna hos tredimensionella aktiva vätskor. Fördelen med denna metod gör det inte bara möjligt att reglera flödeshastigheter på plats, utan möjliggör även dynamisk styrning, till exempel att regelbundet trimma flödeshastigheter upp och ned.

Abstract

Vi presenterar en metod för att använda temperatur för att finjustera flödeshastigheterna för kinesindrivna, mikrotubule-baserade tredimensionella (3D) aktiva vätskor. Denna metod gör det möjligt att trimma hastigheter på plats utan att behöva tillverka nya prover för att nå olika önskade hastigheter. Dessutom möjliggör denna metod dynamisk kontroll av hastighet. Cykling temperaturen leder vätskor för att flöda snabbt och långsamt, regelbundet. Denna manövrerbarhet baseras på Arrhenius-karakteristik för kinesinmikrotubule-reaktionen, vilket visar ett kontrollerat medelvärde för flödeshastighet på 4 – 8 μm/s. Den presenterade metoden kommer att öppna dörren till utformningen av mikroflödessystem enheter där flödeshastigheter i kanalen är lokalt avstämbar utan behov av en ventil.

Introduction

Aktiv materia är differentierat från konventionell passiv materia på grund av dess förmåga att omvandla kemisk energi till mekaniskt arbete. Ett material som besitter sådan förmåga kan bestå av levande eller icke-levande enheter såsom bakterier, insekter, kolloider, korn, och cytoskelett filament1,2,3,4,5,6,7,8,9,10. Dessa material enheter interagerar med sina grannar. I större skala, de själv organisera i antingen turbulenta-liknande virvlar (aktiv turbulens) eller materialflöden11,12,13,14,15,16,17,18,19,20. En förståelse för självorganisering av aktiv materia har lett till olika tillämpningar i molekylära shuttles, optiska enheter och parallell beräkning21,22,23. För att få program till nästa nivå kräver kontroll bortom självorganisering. Till exempel, Palacci et al. utvecklat en hematite-inkapslad kolloid som självgående endast när de utsätts för manuellt kontrollerade blått ljus, vilket ledde till uppkomsten av levande kristaller24. Morin et al. etablerat kontroll av rullande Quincke kolloider med hjälp av en avstämbara yttre elektriska fält, vilket resulterar i kolloidal flockas i en travet-liknande kanal25. Dessa tidigare arbeten visar den roll som den lokala kontrollen har i tillämpningar och avancerar kunskapsbasen för aktiv materia.

I den här artikeln fokuserar vi på manövrerbarheten av kinesindrivna, mikrotubule (MT)-baserade 3D-aktiva vätskor. Vätskorna består av tre huvudkomponenter: MTs, kinesinet molekylära motorer och nedbrytande medel. De nedbrytande inducerar en utarmning kraft för att bunta MTs, som senare överbryggas av motor kluster. Dessa motorer går längs MTstoward plus änden. När ett par brygged MTsis antiparallel, motsvarande motorer gå i motsatt riktning. Men motorerna är bundna i ett kluster och kan inte gå isär, så de kooperativt glida isär par MTs (interfilament glidande, figur 1a). Dessa glidande dynamik ackumuleras, orsakar buntar av MTsto förlänga tills de når sin buckling instabilitet punkt och bryta (extensile buntar, figur 1B)26. De trasiga buntarna glödgas av den utarmning kraft, som därefter sträcker sig igen, och dynamiken upprepa. Under processen av den upprepande dynamiken, bunt rörelser rör den närliggande vätskan, inducera flöden som kan visualiseras genom dopning med Micron-skala spårämnen (figur 1C). Sanchez et al. och Henkin et al. har karakteriserat medelvärdet av tracers, att finna att hastigheterna var avstämbara genom att variera koncentrationerna av adenosintrifosfat (ATP), beklagar, motoriska kluster, och MTS19,27. Emellertid, sådan inställnings existerade endast före aktiv vätske syntes. Efter syntesen, var inställnings förlorad, och vätskorna självorganiserade på sitt eget sätt. För att kontrollera aktiv vätske aktivitet efter syntes, rapporterade Ross.et al. en metod med hjälp av ljus-aktiverade Dimerization av motorproteiner, vilket gör att vätske aktivitet att stämmas av och på med hjälp av ljus28. Medan ljusstyrning är praktiskt när det gäller lokalt aktivera vätskor, metoden kräver omkonstruktion av strukturer av motorproteiner, tillsammans med att ändra de optiska banorna i ett mikroskop. Här ger vi en lättanvänd metod för lokalt kontrollerade vätskeflöden utan Mikroskop modifiering samtidigt som motor strukturen hålls intakt.

Vår metod för lokalt trimning av aktivt vätskeflöde baseras på Arrhenius-lagen eftersom kinesin-MT-reaktionen har rapporterats öka med temperatur29,30,31,32. Våra tidigare studier visade att temperaturberoendet av medelhastigheten av ett aktivt vätskeflöde följde Arrhenius ekvation: v = a exp (-Ea/RT), där a är en före exponentiell faktor, R är gaskonstanten, EA är aktiveringsenergin och T är system temperaturen33. Därför är vätske aktivitet känslig för temperatur miljön, och system temperaturen måste vara konsekvent för att stabilisera motorns prestanda, och därmed vätske flödeshastigheten34. I den här artikeln visar vi användningen av motorns temperaturberoende för att kontinuerligt ställa in flödeshastigheterna för aktiva vätskor genom att justera system temperaturen. Vi demonstrerar också beredningen av ett aktivt vätske prov, följt av att montera provet på ett Mikroskop skede vars temperatur styrs via datorprogram. Att öka temperaturen från 16 ° c till 36 ° c påskyndar medelvärdet av flödeshastigheterna från 4 till 8 μm/s. Dessutom är inställnings reversibel: upprepade gånger ökar och minskar temperaturen sekventiellt accelererar och bromsar flödet. Den demonstrerade metoden är tillämplig på ett brett spektrum av system där de viktigaste reaktionerna lyda Arrhenius lag, såsom MT glidflygning assay29,30,31,32.

Protocol

1. beredning av MTs FÖRSIKTIGHET: i detta steg renar vi tubuliner från nötkreatur hjärnvävnad. Bovint hjärna kan orsaka variant Creutzfeldt-Jakobs sjukdom (vCJD)35. Därför bör hjärnan avfall och relaterade lösningar, flaskor, och pipettspetsar samlas i en bioavfall påse och bortskaffas som biologiskt farligt avfallet enligt institutionens regler. Rena tubuliner från bovint hjärna (modifierad från Castoldi et al.36). <…

Representative Results

Att förbereda kinesindrivna, MT-baserade aktiva vätskor kräver både kinesinet och MTs. MTs polymeriserades från märkta tubuliner (steg 1,3 och 1,4) som renades från nötkreatur hjärnor (steg 1,1, figur 2A), följt av återvinning för att förbättra renhet (steg 1,2, figur 2B). Kinesins motorproteiner uttrycks i och renas från E. coli (steg 2,1 och 2,2, figur 2B)<…

Discussion

Styra aktiv materia in situ öppnar dörren till riktad självorganisering av aktiv materia4,5,24,28,54. I den här artikeln presenterar vi ett protokoll för att använda temperatur för att styra kinesindrivna, MT-baserade aktiva vätskor på plats, baserat på Arrhenius karakteristiska för systemet29,30<…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Plasmid K401-BCCP-H6 var en gåva från Dr Zvonimir Dogic. Denna forskning stöddes av Dr. kun-ta Wu ‘ s startfond i Worcester Polytechnic Institute. Vi tackar Dr Zvonimir Dogic för protokollen att rena och etikett tubulin och att syntetisera aktiva vätskor. Vi är tacksamma för Dr Marc Ridilla för hans expertis inom proteinuttryck och rening. Vi tackar Dr William Benjamin Roger för att hjälpa oss med att bygga den temperaturstyrda scenen. Vi erkänner Brandeis MRSEC (NSF-MRSEC-1420382) för användning av biologiska material Facility (BMF). Vi erkänner det kungliga kemi förbundet för att anpassa siffrorna från BATE et al. on Soft Matter33.

Materials

(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid Sigma-Aldrich 238813 Trolox
2-Mercaptoethanol Sigma-Aldrich M6250
3-(Trimethoxysilyl)propyl methacrylate, 98%, ACROS Organics Fisher Scientific AC216550050
3.2mm I.D. Tygon Tubing R-3603 HACH 2074038 Water tubes
31.75 mm diameter uncoated, sapphire window Edmund Optics 43-637 Sapphire disc
3M 1181 Copper Tape – 1/2 IN Width X 18 YD Length – 2.6 MIL Total Thickness – 27551 R.S. HUGHES 054007-27551 Copper tape
Acetic Acid Sigma-Aldrich A6283
Acrylamide Solution (40%/Electrophoresis), Fisher BioReagents Fisher Scientific BP1402-1
Adenosine 5'-triphosphate dipotassium salt hydrate Sigma-Aldrich A8937 ATP
Alexa Fluor 647 NHS Ester (Succinimidyl Ester) Thermo Fisher Scientific A20006 Far-red fluorescent dye. Alexa 647 can be pre suspended in dimethylsulfoxide (DMSO) before mixing with microtubules (1.3.3.2.)
Amicon Ultra-4 Centrifugal Filter Unit Sigma-Aldrich UFC801024 Centrifugal filter tube. Cutoff molecular weight: 10 kDa
Ammonium Persulfate, 100g, MP Biomedicals Fisher Scientific ICN802829 APS
Ampicillin Sodium Salt (Crystalline Powder), Fisher BioReagents Fisher Scientific BP1760 Ampicillin
Antivibration Table Nikon 63-7590S
Avanti J-E Centrifuge Beckman Coulter 369001
Bacto Agar Soldifying Agent, BD Diagnostics VWR 90000-760 Agar
Biotin Alfa Aesar A14207
Bucket-plastic white – 2 gallon Bon 84-715 Water bucket
Calcium Chloride Sigma-Aldrich 746495 CaCl2
Catalase from bovine liver Sigma-Aldrich C40
CFI Plan Apo Lambda 4x Obj Nikon MRD00045 4x air objective
C-FLLL-FOV GFP HC HC HISN ero Shift Nikon 96372 GFP filter cube
CH-109-1.4-1.5 TE Technology CH-109-1.4-1.5 Thermoelectric Cooler (TEC)
Chloramphenicol, 98%, ACROS Organics Fisher Scientific C0378
Cooling block N/A N/A Custom milled aluminum
Coomassie Brilliant Blue R-250 #1610400 Bio-Rad 1610400 Triphenylmethane dye
D-(+)-Glucose Sigma-Aldrich G7528
Dimethyl Sulfoxide (Certified ACS), Fisher Chemical Fisher Scientific D128 DMSO
DL-1,4-Dithiothreitol, 99%, for biochemistry, ACROS Organics Fisher Scientific AC165680050 DTT
DOWSIL 340 Heat Sink Compound Dow 1446622 Thermal paste
ETHYL ALCOHOL, 200 PROOF ACS/USP/NF GRADE 5 GALLON POLY CUBE Pharmco by Greenfield Global 111000200CB05 Ethanol
Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid Sigma-Aldrich E3889 EGTA
Ethylenediaminetetraacetic acid Sigma-Aldrich 798681 EDTA
Fisher BioReagents Microbiology Media Additives: Tryptone Fisher Scientific BP1421 Tryptone
Fisher BioReagents Microbiology Media Additives: Yeast Extract Fisher Scientific BP1422 Yeast extract
Fluoresbrite YG Microspheres, Calibration Grade 3.00 µm Polysciences 18861 Tracer particles
Glucose Oxidase from Aspergillus niger Sigma-Aldrich G2133
Glycerol Sigma-Aldrich G5516
GpCpp Jena Bioscience NU-405L Guanosine-5′[(α,β)-methyleno]triphosphate (GMPCPP)
GS Power's 18 Gauge (True American Wire Ga), 100 feet, 99.9% Stranded Oxygen Free Copper OFC, Red/Black 2 Conductor Bonded Zip Cord Power/Speaker Electrical Cable for Car, Audio, Home Theater Amazon B07428NBCW Copper wire
Guanosine 5'-triphosphate sodium salt hydrate Sigma-Aldrich G8877 GTP
Hellmanex III Sigma-Aldrich Z805939 Detergent
HEPES Sodium Salt (White Powder), Fisher BioReagents Fisher Scientific BP410 NaHEPES
High performance blender machine AIMORES AS-UP1250 Blender
His GraviTrap GE Healthcare 11003399 Gravity Column
Imidazole Sigma-Aldrich I5513
IPTG Sigma-Aldrich I6758 Isopropyl β-D-1-thiogalactopyranoside
Isopropyl Alcohol 99% Pharmco by Greenfield Global 231000099 Isopropanol
JA-10 rotor Beckman Coulter 369687
L-Glutamic acid potassium salt monohydrate Sigma-Aldrich G1501 K-Glutamate
Lysozyme from chicken egg white Sigma-Aldrich L6876
Magnesium chloride hexahydrate Sigma-Aldrich M2670 MgCl2•6H2O
MES sodium salt Sigma-Aldrich M5057 2-(N-Morpholino)ethanesulfonic acid sodium salt
MOPS Sigma-Aldrich M1254 3-(N-Morpholino)propanesulfonic acid
MP-3022 TE Technology MP-3022 Thermocouple
N,N,N',N'-Tetramethylethylenediamine 99%, ACROS Organics Fisher Scientific AC138450500 TEMED
Nanodrop 2000c UV-VIS Spectrophotometer Thermo Fisher Scientific E112352 Spectrometer
Nikon Ti2-E Nikon Inverted Microscope Nikon MEA54000
Norland Optical Adhesive 81 Norland Products NOA81 UV glue
Novex Sharp Pre-stained Protein Standard Thermo Fisher Scientific LC5800 Protein standard ladder
NuPAGE 4-12% Bis-Tris Protein Gels, 1.5 mm, 10-well Thermo Fisher Scientific NP0335BOX SDS gel
Optima L-90K Ultracentrifuge Beckman Coulter 365672
Parafilm PM996 Wrap , 4" Wide; 125 Ft/Roll Cole-Parmer EW-06720-40 Wax film
Pe 300 ultra Illumination System Single
Band , 3mm Light Guide control Pod
power supply
Nikon PE-300-UT-L-SB-40 Cool LED Illuminator
Phenylmethanesulfonyl fluoride Sigma-Aldrich 78830 PMSF
Phosphoenolpyruvic acid monopotassium salt, 99% BeanTown Chemical 129745 PEP
Pierce Coomassie (Bradford) Protein Assay Kit Thermo Fisher Scientific 23200
Pierce Protease Inhibitor Mini Tablets Thermo Fisher Scientific A32953
PIPES Sigma-Aldrich P6757 1,4-Piperazinediethanesulfonic acid
Pluronic F-127 Sigma-Aldrich P2443
Poly(ethylene glycol) Sigma-Aldrich 81300 PEG. Average molecular weight 20,000 Da
Potassium Hydroxide (Pellets/Certified ACS), Fisher Chemical Fisher Scientific P250-500 KOH
PowerEase 300W Power Supply (115 VAC) ThermoFisher Scientific PS0300 DC power supply of the gel box
PS-12-8.4A TE Technology PS-12-8.4A DC power supply of the temperature controller
Pyruvate Kinase/Lactic Dehydrogenase enzymes from rabbit muscle Sigma-Aldrich P-0294 PK/LDH
Quiet One Lifegard Fountain Pump, 296-Gallon Per Hour Amazon B005JWA612 Fish tank pump
Rosetta 2(DE3)pLysS Competent Cells – Novagen Millipore Sigma 71403 Competent cells
Sharp Microwave ZSMC0912BS Sharp 900W Countertop Microwave Oven, 0.9 Cubic Foot, Stainless Steel Amazon B01MT6JZMR Microwave for boiling the water
Sodium Chloride (Crystalline/Certified ACS), Fisher Chemical Fisher Scientific S271-500 NaCl
Sodium dodecyl sulfate Sigma-Aldrich L3771 SDS
Sodium phosphate monobasic Sigma-Aldrich S8282 NaH2PO4
Streptavidin Protein Thermo Fisher Scientific 21122
Sucrose Sigma-Aldrich S7903
TC-720 TE Technology TC-720 Temperature controller
Tris Base, Molecular Biology Grade – CAS 77-86-1 – Calbiochem Sigma-Aldrich 648310 Tris-HCL
Type 45 Ti rotor Beckman Coulter 339160
Type 70 Ti rotor Beckman Coulter 337922
Type 70.1 Ti rotor Beckman Coulter 342184
VWR General-Purpose Laboratory Labeling Tape VWR 89097-916 Paper tapes
VWR Micro Cover Glasses, Square, No. 1 1/2 VWR 48366-227 Glass coverslips
VWR Plain and Frosted Micro Slides, Premium VWR 75799-268 Glass slides
XCell SureLock Mini-Cell ThermoFisher Scientific EI0001 Gel box
ZYLA 5.5 USB3.0 Camera Nikon ZYLA5.5-USB3 Monochrome CCD camera

References

  1. Wioland, H., Lushi, E., Goldstein, R. E. Directed Collective Motion of Bacteria under Channel Confinement. New Journal of Physics. 18 (7), 075002 (2016).
  2. Wioland, H., Woodhouse, F. G., Dunkel, J., Kessler, J. O., Goldstein, R. E. Confinement Stabilizes a Bacterial Suspension into a Spiral Vortex. Physical Review Letters. 110 (26), 268102 (2013).
  3. Buhl, J., et al. From Disorder to Order in Marching Locusts. Science. 312 (5778), 1402-1406 (2006).
  4. Aubret, A., Youssef, M., Sacanna, S., Palacci, J. Targeted Assembly and Synchronization of Self-Spinning Microgears. Nature Physics. 14, 1114 (2018).
  5. Driscoll, M., et al. Unstable Fronts and Motile Structures Formed by Microrollers. Nature Physics. 13 (4), 375 (2017).
  6. Bricard, A., et al. Emergent Vortices in Populations of Colloidal Rollers. Nature Communications. 6, 7470 (2015).
  7. Kumar, N., Soni, H., Ramaswamy, S., Sood, A. K. Flocking at a Distance in Active Granular Matter. Nature Communications. 5, 4688 (2014).
  8. Farhadi, L., Fermino Do Rosario, C., Debold, E. P., Baskaran, A., Ross, J. L. Active Self-Organization of Actin-Microtubule Composite Self-Propelled Rods. Frontiers in Physics. 6 (75), 1 (2018).
  9. Schaller, V., Weber, C., Semmrich, C., Frey, E., Bausch, A. R. Polar Patterns of Driven Filaments. Nature. 467 (7311), 73-77 (2010).
  10. Keber, F. C., et al. Topology and Dynamics of Active Nematic Vesicles. Science. 345 (6201), 1135-1139 (2014).
  11. Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J. M., Sagués, F. Active Nematics. Nature Communications. 9 (1), 3246 (2018).
  12. Wensink, H. H., et al. Meso-Scale Turbulence in Living Fluids. Proceedings of the National Academy of Sciences of the United States of America. 109 (36), 14308-14313 (2012).
  13. Doostmohammadi, A., Yeomans, J. M. Coherent Motion of Dense Active Matter. The European Physical Journal Special Topics. 227 (17), 2401-2411 (2019).
  14. Guillamat, P., Ignés-Mullol, J., Sagués, F. Taming active turbulence with patterned soft interfaces. Nature Communications. 8 (1), 564 (2017).
  15. Maryshev, I., Goryachev, A. B., Marenduzzo, D., Morozov, A. Dry active turbulence in microtubule-motor mixtures. arXiv preprint. , (2018).
  16. Nishiguchi, D., Aranson, I. S., Snezhko, A., Sokolov, A. Engineering bacterial vortex lattice via direct laser lithography. Nature Communications. 9 (1), 4486 (2018).
  17. Shendruk, T. N., Thijssen, K., Yeomans, J. M., Doostmohammadi, A. Twist-induced crossover from two-dimensional to three-dimensional turbulence in active nematics. Physical Review E. 98 (1), 010601 (2018).
  18. Urzay, J., Doostmohammadi, A., Yeomans, J. M. Multi-scale statistics of turbulence motorized by active matter. Journal of Fluid Mechanics. 822, 762-773 (2017).
  19. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M., Dogic, Z. Spontaneous Motion in Hierarchically Assembled Active Matter. Nature. 491 (7424), 431-434 (2012).
  20. Wu, K. T., et al. Transition from Turbulent to Coherent Flows in Confined Three-Dimensional Active Fluids. Science. 355 (6331), (2017).
  21. Hess, H., et al. Molecular shuttles operating undercover: A new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Letters. 3 (12), 1651-1655 (2003).
  22. Aoyama, S., Shimoike, M., Hiratsuka, Y. Self-organized optical device driven by motor proteins. Proceedings of the National Academy of Sciences of the United States of America. 110 (41), 16408-16413 (2013).
  23. Nicolau, D. V., et al. Parallel computation with molecular-motor-propelled agents in nanofabricated networks. Proceedings of the National Academy of Sciences of the United States of America. 113 (10), 2591-2596 (2016).
  24. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J., Chaikin, P. M. Living Crystals of Light-Activated Colloidal Surfers. Science. 339 (6122), 936-940 (2013).
  25. Morin, A., Bartolo, D. Flowing Active Liquids in a Pipe: Hysteretic Response of Polar Flocks to External Fields. Physical Review X. 8 (2), 021037 (2018).
  26. Lakkaraju, S. K., Hwang, W. Critical Buckling Length versus Persistence Length: What Governs Biofilament Conformation. Physical Review Letters. 102 (11), 118102 (2009).
  27. Henkin, G., DeCamp, S. J., Chen, D. T. N., Sanchez, T., Dogic, Z. Tunable Dynamics of Microtubule-Based Active Isotropic Gels. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 372 (2029), 20140142 (2014).
  28. Ross, T. D., et al. Controlling Organization and Forces in Active Matter through Optically-Defined Boundaries. arXiv:1812.09418. , (2018).
  29. Böhm, K. J., Stracke, R., Baum, M., Zieren, M., Unger, E. Effect of temperature on kinesin-driven microtubule gliding and kinesin ATPase activity. FEBS Letters. 466 (1), 59-62 (2000).
  30. Anson, M. Temperature dependence and arrhenius activation energy of F-actin velocity generated in vitro by skeletal myosin. Journal of Molecular Biology. 224 (4), 1029-1038 (1992).
  31. Hong, W., Takshak, A., Osunbayo, O., Kunwar, A., Vershinin, M. The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors. Biophysical Journal. 111 (6), 1287-1294 (2016).
  32. Kawaguchi, K., Ishiwata, S. I. Thermal activation of single kinesin molecules with temperature pulse microscopy. Cell Motility. 49 (1), 41-47 (2001).
  33. Bate, T. E., Jarvis, E. J., Varney, M. E., Wu, K. T. Collective Dynamics of Microtubule-Based 3D Active Fluids from Single Microtubules. Soft Matter. 15 (25), 5006-5016 (2019).
  34. Tucker, R., et al. Temperature Compensation for Hybrid Devices: Kinesin’s Km is Temperature Independent. Small. 5 (11), 1279-1282 (2009).
  35. Collee, J. G., Bradley, R., Liberski, P. P. Variant CJD (vCJD) and bovine spongiform encephalopathy (BSE): 10 and 20 years on: part 2. Folia Neuropathologica. 44 (2), 102 (2006).
  36. Castoldi, M., Popov, A. V. Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expression and Purification. 32 (1), 83-88 (2003).
  37. Swinehart, D. The Beer-Lambert law. Journal of Chemical Education. 39 (7), 333 (1962).
  38. Ashford, A. J., Andersen, S. S., Hyman, A. A. Preparation of tubulin from bovine brain. Cell biology: A laboratory handbook. 2, 205-212 (1998).
  39. Hyman, A., et al. . Methods in Enzymology. 196, 478-485 (1999).
  40. Baneyx, F. Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology. 10 (5), 411-421 (1999).
  41. Spriestersbach, A., Kubicek, J., Schäfer, F., Block, H., Maertens, B., Lorsch, J. R. . Methods in enzymology. 559, 1-15 (2015).
  42. Subramanian, R., Gelles, J. Two Distinct Modes of Processive Kinesin Movement in Mixtures of ATP and AMP-PNP. The Journal of General Physiology. 130 (5), 445-455 (2007).
  43. Gasteiger, E., et al. . The proteomics protocols handbook. , 571-607 (2005).
  44. Taylor, S. C., Berkelman, T., Yadav, G., Hammond, M. A Defined Methodology for Reliable Quantification of Western Blot Data. Molecular Biotechnology. 55 (3), 217-226 (2013).
  45. Lau, A. W. C., Prasad, A., Dogic, Z. Condensation of isolated semi-flexible filaments driven by depletion interactions. Europhysics Letters. 87 (4), 48006 (2009).
  46. Chandrakar, P., et al. Microtubule-Based Active Fluids with Improved Lifetime, Temporal Stability and Miscibility with Passive Soft Materials. arXiv:1811.05026. , (2018).
  47. Lowensohn, J., Oyarzún, B., Paliza, G. N., Mognetti, B. M., Rogers, W. B. Linker-mediated phase behavior of DNA-coated colloids. arXiv:1902.08883. , (2019).
  48. Wu, K. T., et al. Polygamous Particles. Proceedings of the National Academy of Sciences of the United States of America. 109 (46), 18731-18736 (2012).
  49. Wu, K. T., et al. Kinetics of DNA-Coated Sticky Particles. Physical Review E. 88 (2), 022304 (2013).
  50. Ouellette, N. T., Xu, H., Bodenschatz, E. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Experiments in Fluids. 40 (2), 301-313 (2005).
  51. Kelley, D. H., Ouellette, N. T. Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment. American Journal of Physics. 79 (3), 267-273 (2011).
  52. Young, E. C., Berliner, E., Mahtani, H. K., Perez-Ramirez, B., Gelles, J. Subunit Interactions in Dimeric Kinesin Heavy Chain Derivatives That Lack the Kinesin Rod. Journal of Biological Chemistry. 270 (8), 3926-3931 (1995).
  53. Aström, K. J., Murray, R. M. . Feedback systems: an introduction for scientists and engineers. , (2011).
  54. Soni, V., et al. The free surface of a colloidal chiral fluid: waves and instabilities from odd stress and Hall viscosity. arXiv:1812.09990. , (2018).
  55. Harvey, M. Precision Temperature-Controlled Water Bath. Review of Scientific Instruments. 39 (1), 13-18 (1968).
  56. Beuchat, L. R. Influence of Water Activity on Growth, Metabolic Activities and Survival of Yeasts and Molds. Journal of Food Protection. 46 (2), 135-141 (1983).
  57. Block, S. S. . Disinnfection, sterilization, annd preservation. , (2001).
  58. Schumb, W. C., Satterfield, C. N., Wentworth, R. L. . Hydrogen peroxide. , (1955).
  59. Simmons, G. F., Smilanick, J. L., John, S., Margosan, D. A. Reduction of Microbial Populations on Prunes by Vapor-Phase Hydrogen Peroxide. Journal of Food Protection. 60 (2), 188-191 (1997).
  60. Shimoboji, T., Larenas, E., Fowler, T., Hoffman, A. S., Stayton, P. S. Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates. Bioconjugate chemistry. 14 (3), 517-525 (2003).
check_url/fr/60484?article_type=t

Play Video

Citer Cet Article
Bate, T. E., Jarvis, E. J., Varney, M. E., Wu, K. Controlling Flow Speeds of Microtubule-Based 3D Active Fluids Using Temperature. J. Vis. Exp. (153), e60484, doi:10.3791/60484 (2019).

View Video