Summary

Identifikation af Transskription Factor Regulators ved hjælp af Medium-Throughput Screening af Arrayed Biblioteker og en Dual-Luciferase-baserede Reporter

Published: March 27, 2020
doi:

Summary

For at identificere nye regulatorer af transskription faktorer, vi udviklet en tilgang til at screene arrayed lentiviral eller retroviral RNAi biblioteker ved hjælp af en dual-luciferase-baserede transskriptions-reporter assay. Denne tilgang tilbyder en hurtig og relativt billig måde at screene hundredvis af kandidater i et enkelt eksperiment.

Abstract

Transskription faktorer kan ændre udtrykket af mange mål gener, der påvirker en række downstream processer gør dem gode mål for anti-cancer behandlinger. Men, direkte målretning transskription faktorer er ofte vanskeligt og kan forårsage bivirkninger, hvis transskription faktor er nødvendig i en eller flere voksne væv. Identifikation upstream regulatorer, der afvigende aktivere transskription faktorer i kræftceller tilbyder et mere realistisk alternativ, især hvis disse proteiner er nemme at narkotika. Her beskriver vi en protokol, der kan bruges til at kombinere arrayed medium-skala lentiviral biblioteker og en dual-luciferase-baserede transskriptions-reporter assay at identificere nye regulatorer af transskription faktorer i kræftceller. Vores tilgang tilbyder en hurtig, nem og billig måde at teste hundredvis af gener på i et enkelt eksperiment. For at demonstrere brugen af denne tilgang, udførte vi en skærm af en arrayed lentiviral RNAi bibliotek, der indeholder flere regulatorer af Ja-associeret protein (YAP) og transskriptionelle co-aktivator med PDZ-bindende motiv (TAZ), to transskriptionelle co-aktivatorer, der er downstream effektorer af Hippo pathway. Denne fremgangsmåde kan dog ændres til at screene for regulatorer af stort set alle transskriptionsfaktorer eller co-faktor og kan også bruges til at screene CRISPR/CAS9-, cDNA- eller ORF-biblioteker.

Introduction

Formålet med denne analyse er at bruge viralbiblioteker til at identificere regulatorer af transskriptionsfaktorer på en relativt hurtig og billig måde. Afvigende transskriptionsaktivitet er forbundet med kræft og metastase1,,2,3,4,5,6, så målretning transskription faktorer i kræftceller er en lovende terapeutisk tilgang. Transskriptionsfaktorer er imidlertid ofte vanskelige at målrette farmakologisk7 , og mange er nødvendige for normal cellefunktion i voksent væv8,9,10. Målretning af kræft-associerede veje, der afvigende aktivere transskription faktorer til at drive sygdom er en mere realistisk tilgang med potentiale til at have mindre alvorlige bivirkninger. Den kommercielle tilgængelighed af arrayed lentivirale og retrovirale RNAi, CRISPR/CAS9, cDNA eller ORF biblioteker giver forskerne mulighed for at teste betydningen af mange gener i et enkelt eksperiment. Der kræves dog en pålidelig udlæsning for ændret transskriptionsaktivitet.

Her beskriver vi brugen af en dobbelt-luciferase-baserede transskriptionel reporter assay og arrayed lentiviral biblioteker til at identificere proteiner, der regulerer transskription faktorer i kræftceller. I denne analyse, shRNAs at målrette kræft-associerede gener leveres til pattedyr kræftceller via lentiviral transduktion og celler er udvalgt til stabil integration ved hjælp af puromycin. Cellerne er næste transfected med en reporter konstruktion, der udtrykker firefly luciferase drevet af en promotor specifikt til transskription faktor, der er ved at blive undersøgt, og en kontrol konstruktion, der udtrykker Renilla luciferase fra en konstituerende aktiv promotor, der ikke er lydhør ekonnert over for transskription faktor, der undersøges. Vi demonstrerer denne tilgang med en proof-of-concept skærm for lovgivere af YAP og TAZ, de kritiske downstream effektorer af Hippo pathway8,10,11. Unormal aktivitet af YAP og TAZ fremmer flere trin i den metastatiske kaskade11 og er observeret i mange kræftformer11,12,13. Men, hvordan YAP og TAZ bliver afvigende aktiveret i nogle kræftceller er endnu ikke fuldt forstået. YAP og TAZ binder ikke DNA, men rekrutteres i stedet til initiativtagere af andre transskriptionsfaktorer. Medlemmer af TEA domæne (TEAD) familie af transskription faktorer er de vigtigste bindende partnere for YAP og TAZ, og er afgørende for de fleste YAP og TAZ-afhængige funktioner. Vores reporter konstruere udtrykker firefly luciferase fra en YAP / TAZ-TEAD-lydhør promotor og tidligere undersøgelser har vist, at det trofast registrerer ændringer i YAP-TEAD og TAZ-TEAD transskriptionelle aktivitet2,14,15.

Vores tilgang er hurtig, medium-throughput, og kræver ikke screening faciliteter, automatiserede robotter, eller dyb sekventering af pooled biblioteker. Omkostningerne er relativt lave, og der er mange kommercielt tilgængelige biblioteker at vælge imellem. Det nødvendige udstyr og de nødvendige reagenser er også relativt standard i de fleste laboratorier. Det kan bruges til at screene for lovgivere af stort set enhver transskription faktor, hvis en luciferase-baserede reporter eksisterer eller genereres. Vi bruger denne tilgang til at screene shRNAs i kræftceller, men enhver celle linje, der kan transfected med rimelig effektivitet kunne bruges med enhver form for arrayed bibliotek.

Protocol

BEMÆRK: Et skematisk resumé af denne protokol er vist i figur 1. 1. Lentiviral vektor bibliotek forberedelse BEMÆRK: Den demonstrerede skærm brugte et arrayed shRNA bibliotek købt som glycerol lagre i 96-brønd plader, men biblioteker kan også samles manuelt baseret på en liste over kandidater. Passende kontroller bør overvejes og indgå i ethvert bibliotek. Dette omfatter en ikke-målretning kontrol shRNA (shNTC), en kontrol shRN…

Representative Results

Vores YAP / TAZ-TEAD reporter konstruktion (pGL3-5xMCAT (SV)-492,,14,,15) indeholder en minimal SV-49 promotor med 5 gentagelser af kanoniske TEAD bindende element (MCAT)15 køre firefly luciferase genet ( Figur1). Det er co-transficeret i celler sammen med PRL-TK kontrol vektor (Promega), som udtrykker Renilla luciferase fra konstitu…

Discussion

I denne undersøgelse demonstrerer vi en tilgang til medium-gennemløb screening af arrayed viral biblioteker i kombination med en dual-luciferase-baserede transskriptionsreporter assay, der kan bruges til at identificere og teste nye regulatorer af transskription faktorer. Det er vigtigt at karakterisere og optimere reportersystemet for hver cellelinje før enhver skærm. Der bør gøres forsøg for at bekræfte, at journalisten er lydhør over for ændret aktivitet af den transskriptionsfaktor, der undersøges, og omfa…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Vi vil gerne takke Emily Norton og Mikaelan Cucciarre-Stuligross for at hjælpe med udarbejdelsen af shRNA vektorer. Dette arbejde blev delvist støttet af en Susan G. Komen Career Catalyst Grant, der tildeles J.M.L. (#CCR17477184).

Materials

2.0 ml 96-well deep well polypropylene plate USA Scientific 1896-2000 For bacterial mini-prep
Trypsin – 2.50% Gibco 15090-046 Component of trypsin-EDTA
96 well flat bottom white assay plate Corning 3922 For dual-luciferase assay
Ampicillin – 100 mg/ml Sigma-Aldrich 45-10835242001-EA For bacterial mini-prep
Bacto-tryptone – powder Sigma-Aldrich 95039 Component of LB broth
Dual-luciferase reporter assay system, which include LAR II reagent (reagent A), Stop & Glo substrate (reagent B substrate) and Stop & Glo buffer (reagent B buffer) – Kit Promega E1960 For dual-luciferase assay
Dulbecco's phosphate buffered saline w/o calcium, magnesium and phenol red – 9.6 g/L Himedia TS1006 For PBS
EDTA – 0.5 M VWR 97061-406 Component of trypsin-EDTA
Ethanol – 100% Pharmco-AAPER 111000200 For bacterial mini-prep
Foetal Bovine Serum – 100% VWR 97068-085 Component of complete growth media
Hexadimethrine bromide (Polybrene) – 8 mg/ml Sigma-Aldrich 45-H9268 For virus infection
HyClone DMEM/High glucose – 4 mM L-Glutamine; 4500 mg/L glucose; sodium pyruvate GE Healthcare life sciences SH30243.01 Component of complete growth media
I3-P/i3 Multi-Mode Microplate/EA Molecular devices For dual-luciferase assay
L-Glutamine – 200 mM Gibco 25030-081 Component of complete growth media
Lipofectamine 3000 (Transfection Reagent 2) – 100% Life technologies L3000008 For transfections
Molecular Biology Water – 100% VWR 02-0201-0500 For dilution of shRNA vector for virus packaging
NaCl – powder BDH BDH9286 Component of LB broth
NanoDrop One Microvolume UV-Vis Spectrophotometer Thermo scientific For measuring vector DNA concentration
Opti-MEM (Transfection Buffer) – 100% Gibco 31985-062 For transfections
Penicillin Streptomycin – 10,000 Unit/ml (Penicillin); 10,000 µg/ml (Streptomycin) Gibco 15140-122 Component of complete growth media
PureLink Quick Plasmid Miniprep Kit – Kit Thermo Fisher Scientific K210010 For bacterial mini-prep
Puromycin – 2.5 mg/ml Sigma-Aldrich 45-P7255 For antibiotic selection after infection
TC20 automated cell counter Bio-Rad For cell counting
X-tremeGENE 9 DNA transfection reagent (Transfection Reagent 1) – 100% Roche 6365787001 For virus packaging
Yeast extract – powder VWR J850 Component of LB broth
P3000 (Transfection Reagent 3) – 100% Life technologies L3000008 For transfections

References

  1. Chen, K. S., Lim, J. W. C., Richards, L. J., Bunt, J. The convergent roles of the nuclear factor I transcription factors in development and cancer. Cancer Letters. 410, 124-138 (2017).
  2. Lamar, J. M., et al. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proceedings of the National Academy of Sciences of the United States of America. 109 (37), E2441-E2450 (2012).
  3. Liu, C. Y., Yu, T., Huang, Y., Cui, L., Hong, W. ETS (E26 transformation-specific) up-regulation of the transcriptional co-activator TAZ promotes cell migration and metastasis in prostate cancer. Journal of Biological Chemistry. 292 (22), 9420-9430 (2017).
  4. Semenza, G. L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends in Molecular Medicine. 7 (8), 345-350 (2001).
  5. Willmer, T., Cooper, A., Peres, J., Omar, R., Prince, S. The T-Box transcription factor 3 in development and cancer. Bioscience Trends. 11 (3), 254-266 (2017).
  6. Zhu, C., Li, L., Zhao, B. The regulation and function of YAP transcription co-activator. Acta Biochim Biophys Sin (Shanghai). 47 (1), 16-28 (2015).
  7. Dang, C. V., Reddy, E. P., Shokat, K. M., Soucek, L. Drugging the ‘undruggable’ cancer targets. Nature Reviews: Cancer. 17 (8), 502-508 (2017).
  8. Fu, V., Plouffe, S. W., Guan, K. L. The Hippo pathway in organ development, homeostasis, and regeneration. Current Opinion in Cell Biology. 49, 99-107 (2017).
  9. Hansen, C. G., Moroishi, T., Guan, K. L. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends in Cell Biology. 25 (9), 499-513 (2015).
  10. Yu, F. X., Zhao, B., Guan, K. L. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell. 163 (4), 811-828 (2015).
  11. Warren, J. S. A., Xiao, Y., Lamar, J. M. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers. 10 (4), (2018).
  12. Janse van Rensburg, H. J., Yang, X. The roles of the Hippo pathway in cancer metastasis. Cellular Signalling. 28 (11), 1761-1772 (2016).
  13. Zanconato, F., Cordenonsi, M., Piccolo, S. YAP/TAZ at the Roots of Cancer. Cancer Cell. 29 (6), 783-803 (2016).
  14. Lamar, J. M., et al. SRC tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis. Journal of Biological Chemistry. 294 (7), 2302-2317 (2019).
  15. Mahoney, W. M., Hong, J. H., Yaffe, M. B., Farrance, I. K. The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochemical Journal. 388 (Pt 1), 217-225 (2005).
  16. Codelia, V. A., Sun, G., Irvine, K. D. Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Current Biology. 24 (17), 2012-2017 (2014).
  17. Cosset, E., et al. Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell. 32 (6), 856-868 (2017).
  18. de Cristofaro, T., et al. TAZ/WWTR1 is overexpressed in papillary thyroid carcinoma. European Journal of Cancer. 47 (6), 926-933 (2011).
  19. Densham, R. M., et al. MST kinases monitor actin cytoskeletal integrity and signal via c-Jun N-terminal kinase stress-activated kinase to regulate p21Waf1/Cip1 stability. Molecular and Cellular Biology. 29 (24), 6380-6390 (2009).
  20. Eda, H., Aoki, K., Marumo, K., Fujii, K., Ohkawa, K. FGF-2 signaling induces downregulation of TAZ protein in osteoblastic MC3T3-E1 cells. Biochemical and Biophysical Research Communications. 366 (2), 471-475 (2008).
  21. Elbediwy, A., et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development. 143 (10), 1674-1687 (2016).
  22. Enomoto, M., Igaki, T. Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in Drosophila. EMBO Reports. 14 (1), 65-72 (2013).
  23. Enomoto, M., Kizawa, D., Ohsawa, S., Igaki, T. JNK signaling is converted from anti- to pro-tumor pathway by Ras-mediated switch of Warts activity. Biologie du développement. 403 (2), 162-171 (2015).
  24. Fan, R., Kim, N. G., Gumbiner, B. M. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proceedings of the National Academy of Sciences of the United States of America. 110 (7), 2569-2574 (2013).
  25. Feng, R., et al. MAPK and Hippo signaling pathways crosstalk via the RAF-1/MST-2 interaction in malignant melanoma. Oncology Reports. 38 (2), 1199-1205 (2017).
  26. Fisher, M. L., et al. Transglutaminase Interaction with alpha6/beta4-Integrin Stimulates YAP1-Dependent DeltaNp63alpha Stabilization and Leads to Enhanced Cancer Stem Cell Survival and Tumor Formation. Recherche en cancérologie. 76 (24), 7265-7276 (2016).
  27. Haskins, J. W., Nguyen, D. X., Stern, D. F. Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Science Signaling. 7 (355), (2014).
  28. Hoeing, K., et al. Presenilin-1 processing of ErbB4 in fetal type II cells is necessary for control of fetal lung maturation. Biochimica et Biophysica Acta. 1813 (3), 480-491 (2011).
  29. Hwang, J. H., et al. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation. PloS One. 10 (8), e0135519 (2015).
  30. Kaneko, K., Ito, M., Naoe, Y., Lacy-Hulbert, A., Ikeda, K. Integrin alphav in the mechanical response of osteoblast lineage cells. Biochemical and Biophysical Research Communications. 447 (2), 352-357 (2014).
  31. Kim, N. G., Gumbiner, B. M. Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. Journal of Cell Biology. 210 (3), 503-515 (2015).
  32. Kuser-Abali, G., Alptekin, A., Cinar, B. Overexpression of MYC and EZH2 cooperates to epigenetically silence MST1 expression. Epigenetics. 9 (4), 634-643 (2014).
  33. Liu, N., et al. HDM2 Promotes NEDDylation of Hepatitis B Virus HBx To Enhance Its Stability and Function. Journal of Virology. 91 (16), (2017).
  34. Liu, X., et al. The EZH2- H3K27me3-DNMT1 complex orchestrates epigenetic silencing of the wwc1 gene, a Hippo/YAP pathway upstream effector, in breast cancer epithelial cells. Cellular Signalling. 51, 243-256 (2018).
  35. Omerovic, J., et al. Ligand-regulated association of ErbB-4 to the transcriptional co-activator YAP65 controls transcription at the nuclear level. Experimental Cell Research. 294 (2), 469-479 (2004).
  36. Pegoraro, S., et al. A novel HMGA1-CCNE2-YAP axis regulates breast cancer aggressiveness. Oncotarget. 6 (22), 19087-19101 (2015).
  37. Xia, H., et al. EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy. Cell Death & Disease. 9 (3), 269 (2018).
  38. Yan, F., et al. ErbB4 protects against neuronal apoptosis via activation of YAP/PIK3CB signaling pathway in a rat model of subarachnoid hemorrhage. Experimental Neurology. 297, 92-100 (2017).
  39. Aragona, M., et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 154 (5), 1047-1059 (2013).
  40. Bonilla, X., et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nature Genetics. 48 (4), 398-406 (2016).
  41. Enger, T. B., et al. The Hippo signaling pathway is required for salivary gland development and its dysregulation is associated with Sjogren’s syndrome. Laboratory Investigation. 93 (11), 1203-1218 (2013).
  42. Fausti, F., et al. ATM kinase enables the functional axis of YAP, PML and p53 to ameliorate loss of Werner protein-mediated oncogenic senescence. Cell Death and Differentiation. 20 (11), 1498-1509 (2013).
  43. He, J., et al. Positive regulation of TAZ expression by EBV-LMP1 contributes to cell proliferation and epithelial-mesenchymal transition in nasopharyngeal carcinoma. Oncotarget. 8 (32), 52333-52344 (2017).
  44. Huang, W., et al. The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFbeta-TrCP-dependent degradation in response to phosphatidylinositol 3-kinase inhibition. Journal of Biological Chemistry. 287 (31), 26245-26253 (2012).
  45. Imada, S., et al. Role of Src Family Kinases in Regulation of Intestinal Epithelial Homeostasis. Molecular and Cellular Biology. 36 (22), 2811-2823 (2016).
  46. Kim, N. G., Koh, E., Chen, X., Gumbiner, B. M. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proceedings of the National Academy of Sciences of the United States of America. 108 (29), 11930-11935 (2011).
  47. Lai, J. K. H., et al. The Hippo pathway effector Wwtr1 regulates cardiac wall maturation in zebrafish. Development. 145 (10), (2018).
  48. Li, H., Gumbiner, B. M. Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis. Mammalian Genome. 27 (11-12), 556-564 (2016).
  49. Pefani, D. E., O’Neill, E. Hippo pathway and protection of genome stability in response to DNA damage. The FEBS Journal. 283 (8), 1392-1403 (2016).
  50. Serrano, I., McDonald, P. C., Lock, F., Muller, W. J., Dedhar, S. Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nature Communications. 4, 2976 (2013).
  51. Vlug, E. J., et al. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cellular Oncology (Dordrecht). 36 (5), 375-384 (2013).
  52. Xie, Q., et al. YAP/TEAD-mediated transcription controls cellular senescence. Recherche en cancérologie. 73 (12), 3615-3624 (2013).
  53. Yee, K. S., et al. A RASSF1A polymorphism restricts p53/p73 activation and associates with poor survival and accelerated age of onset of soft tissue sarcoma. Recherche en cancérologie. 72 (9), 2206-2217 (2012).
  54. Zhou, Z., et al. Oncogenic Kinase-Induced PKM2 Tyrosine 105 Phosphorylation Converts Nononcogenic PKM2 to a Tumor Promoter and Induces Cancer Stem-like Cells. Recherche en cancérologie. 78 (9), 2248-2261 (2018).
  55. Baker, J. M., Boyce, F. M. High-throughput functional screening using a homemade dual-glow luciferase assay. Journal of Visualized Experiments. (88), (2014).
check_url/fr/60582?article_type=t

Play Video

Citer Cet Article
Xiao, Y., Lamar, J. M. Identification of Transcription Factor Regulators using Medium-Throughput Screening of Arrayed Libraries and a Dual-Luciferase-Based Reporter. J. Vis. Exp. (157), e60582, doi:10.3791/60582 (2020).

View Video