Summary

Identificación de reguladores de factores de transcripción mediante la proyección de rendimiento medio de bibliotecas de matriz y un reportero basado en la doble luciferasa

Published: March 27, 2020
doi:

Summary

Para identificar nuevos reguladores de los factores de transcripción, desarrollamos un enfoque para las bibliotecas de ARN lentivirales o retrovirales arrayed utilizando un ensayo de reportero transcripcional basado en doble luciferasa. Este enfoque ofrece una forma rápida y relativamente económica de examinar a cientos de candidatos en un solo experimento.

Abstract

Los factores de transcripción pueden alterar la expresión de numerosos genes diana que influyen en una variedad de procesos posteriores, por lo que son buenos objetivos para las terapias contra el cáncer. Sin embargo, apuntar directamente a los factores de transcripción es a menudo difícil y puede causar efectos secundarios adversos si el factor de transcripción es necesario en uno o más tejidos adultos. La identificación de reguladores ascendentes que activan aberrantemente los factores de transcripción en las células cancerosas ofrece una alternativa más factible, especialmente si estas proteínas son fáciles de drogar. Aquí, describimos un protocolo que se puede utilizar para combinar bibliotecas lentivirales a escala media y un ensayo de reportero transcripcional basado en doble luciferasa para identificar nuevos reguladores de factores de transcripción en las células cancerosas. Nuestro enfoque ofrece una manera rápida, fácil y económica de probar cientos de genes en un solo experimento. Para demostrar el uso de este enfoque, realizamos una pantalla de una biblioteca de ARN lentiviral esampliatizada que contiene varios reguladores de proteína asociada al Sí (YAP) y coactivadora transcripcional con motivo de unión a PDZ (TAZ), dos coactivadores transcripcionales que son los efectores descendentes de la vía Hippo. Sin embargo, este enfoque podría modificarse para detectar a los reguladores de prácticamente cualquier factor de transcripción o cofactor y también podría utilizarse para examinar las bibliotecas CRISPR/CAS9, cDNA u ORF.

Introduction

El propósito de este ensayo es utilizar bibliotecas virales para identificar reguladores de los factores de transcripción de una manera relativamente rápida y económica. La actividad transcripcional aberrante se asocia con el cáncer y la metástasis1,2,3,4,5,6, por lo que la orientación a los factores de transcripción en las células cancerosas es un enfoque terapéutico prometedor. Sin embargo, los factores de transcripción son a menudo difíciles de atacar farmacológicamente7 y muchos son necesarios para la función celular normal en los tejidos adultos8,9,10. Dirigirse a las vías asociadas al cáncer que activan aberrantemente los factores de transcripción para impulsar la enfermedad es un enfoque más factible con el potencial de tener efectos secundarios menos graves. La disponibilidad comercial de las bibliotecas arrayed lentiviral y retroviral RNAi, CRISPR/CAS9, cDNA o ORF permite a los investigadores probar la importancia de numerosos genes en un solo experimento. Sin embargo, se requiere una lectura confiable para la actividad transcripcional alterada.

Aquí, describimos el uso de un ensayo de reportero transcripcional basado en doble luciferasa y bibliotecas lentivirales arrayed para identificar proteínas que regulan los factores de transcripción en las células cancerosas. En este ensayo, los shRNA que se dirigen a los genes asociados al cáncer se entregan a las células cancerosas de los mamíferos a través de la transducción lentiviral y las células se seleccionan para una integración estable mediante puromicina. Las células se transtroculan a continuación con una construcción de reportero que expresa luciferasa de luciérnaga impulsada por un promotor específico para el factor de transcripción que se está investigando y una construcción de control que expresa Renilla luciferasse de un promotor constitutivamente activo que no responde al factor de transcripción que se está investigando. Demostramos este enfoque con una pantalla de prueba de concepto para reguladores de YAP y TAZ, los efectores descendentes críticos de la vía Hippo8,10,11. La actividad anormal de YAP y TAZ promueve varios pasos de la cascada metastásica11 y se observa en muchos cánceres11,,12,13. Sin embargo, aún no se entiende completamente cómo YAP y TAZ se activan aberrantemente en algunas células cancerosas. YAP y TAZ no unen EL ADN, sino que son reclutados a promotores por otros factores de transcripción. Los miembros de la familia de factores de transcripción del dominio TEA (TEAD) son los principales socios vinculantes para YAP y TAZ, y son críticos para la mayoría de las funciones dependientes de YAP y TAZ. Nuestra construcción de reportero expresa la luciferasa de la luciosel de un promotor yAP/TAZ-TEAD-responsive y estudios anteriores han demostrado que detecta fielmente los cambios en la actividad transcripcional YAP-TEAD y TAZ-TEAD2,14,15.

Nuestro enfoque es rápido, de rendimiento medio, y no requiere instalaciones de cribado, robots automatizados o secuenciación profunda de bibliotecas agrupadas. Los costos son relativamente bajos y hay numerosas bibliotecas disponibles comercialmente para elegir. Los equipos y reactivos requeridos también son relativamente estándar en la mayoría de los laboratorios. Se puede utilizar para detectar reguladores de prácticamente cualquier factor de transcripción si existe o se genera un reportero basado en luciferasa. Utilizamos este enfoque para examinar los shRNA en las células cancerosas, pero cualquier línea celular que pueda ser transllenada con una eficiencia razonable podría ser utilizada con cualquier tipo de biblioteca de matriz.

Protocol

NOTA: En la Figura 1se muestra un resumen esquemático de este protocolo. 1. Preparación de la biblioteca de vectores Lentivirales NOTA: La pantalla demostrada utilizaba una biblioteca de shRNA en matriz comprada como acciones de glicerol en placas de 96 pocillos, pero las bibliotecas también se pueden ensamblar manualmente en función de una lista de candidatos. Los controles adecuados deben ser considerados e incluidos en cualquier bi…

Representative Results

Nuestra construcción de reportero YAP/TAZ-TEAD (pGL3-5xMCAT (SV)-492,14,15) contiene un promotor SV-49 mínimo con 5 repeticiones del elemento canónico TEAD binding element (MCAT)15 conduciendo el gen de la luciosa luciérnaga(Figura 1). Se co-tranfectó en células junto con el vector de control PRL-TK (Promega), que expresa Renilla</em…

Discussion

En este estudio, demostramos un enfoque para la detección de rendimiento medio de bibliotecas virales en conjunto con un ensayo de reportero transcripcional basado en doble luciferasa que se puede utilizar para identificar y probar nuevos reguladores de factores de transcripción. Es fundamental caracterizar y optimizar el sistema de reportero para cada línea celular antes de cualquier pantalla. Se deben realizar experimentos para confirmar que el reportero responde a la actividad alterada del factor de transcripción …

Divulgations

The authors have nothing to disclose.

Acknowledgements

Nos gustaría dar las gracias a Emily Norton y Mikaelan Cucciarre-Stuligross por ayudar en la preparación de vectores de ARNH. Este trabajo fue apoyado en parte por una beca Susan G. Komen Career Catalyst que otorgó a J.M.L. (#CCR17477184).

Materials

2.0 ml 96-well deep well polypropylene plate USA Scientific 1896-2000 For bacterial mini-prep
Trypsin – 2.50% Gibco 15090-046 Component of trypsin-EDTA
96 well flat bottom white assay plate Corning 3922 For dual-luciferase assay
Ampicillin – 100 mg/ml Sigma-Aldrich 45-10835242001-EA For bacterial mini-prep
Bacto-tryptone – powder Sigma-Aldrich 95039 Component of LB broth
Dual-luciferase reporter assay system, which include LAR II reagent (reagent A), Stop & Glo substrate (reagent B substrate) and Stop & Glo buffer (reagent B buffer) – Kit Promega E1960 For dual-luciferase assay
Dulbecco's phosphate buffered saline w/o calcium, magnesium and phenol red – 9.6 g/L Himedia TS1006 For PBS
EDTA – 0.5 M VWR 97061-406 Component of trypsin-EDTA
Ethanol – 100% Pharmco-AAPER 111000200 For bacterial mini-prep
Foetal Bovine Serum – 100% VWR 97068-085 Component of complete growth media
Hexadimethrine bromide (Polybrene) – 8 mg/ml Sigma-Aldrich 45-H9268 For virus infection
HyClone DMEM/High glucose – 4 mM L-Glutamine; 4500 mg/L glucose; sodium pyruvate GE Healthcare life sciences SH30243.01 Component of complete growth media
I3-P/i3 Multi-Mode Microplate/EA Molecular devices For dual-luciferase assay
L-Glutamine – 200 mM Gibco 25030-081 Component of complete growth media
Lipofectamine 3000 (Transfection Reagent 2) – 100% Life technologies L3000008 For transfections
Molecular Biology Water – 100% VWR 02-0201-0500 For dilution of shRNA vector for virus packaging
NaCl – powder BDH BDH9286 Component of LB broth
NanoDrop One Microvolume UV-Vis Spectrophotometer Thermo scientific For measuring vector DNA concentration
Opti-MEM (Transfection Buffer) – 100% Gibco 31985-062 For transfections
Penicillin Streptomycin – 10,000 Unit/ml (Penicillin); 10,000 µg/ml (Streptomycin) Gibco 15140-122 Component of complete growth media
PureLink Quick Plasmid Miniprep Kit – Kit Thermo Fisher Scientific K210010 For bacterial mini-prep
Puromycin – 2.5 mg/ml Sigma-Aldrich 45-P7255 For antibiotic selection after infection
TC20 automated cell counter Bio-Rad For cell counting
X-tremeGENE 9 DNA transfection reagent (Transfection Reagent 1) – 100% Roche 6365787001 For virus packaging
Yeast extract – powder VWR J850 Component of LB broth
P3000 (Transfection Reagent 3) – 100% Life technologies L3000008 For transfections

References

  1. Chen, K. S., Lim, J. W. C., Richards, L. J., Bunt, J. The convergent roles of the nuclear factor I transcription factors in development and cancer. Cancer Letters. 410, 124-138 (2017).
  2. Lamar, J. M., et al. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proceedings of the National Academy of Sciences of the United States of America. 109 (37), E2441-E2450 (2012).
  3. Liu, C. Y., Yu, T., Huang, Y., Cui, L., Hong, W. ETS (E26 transformation-specific) up-regulation of the transcriptional co-activator TAZ promotes cell migration and metastasis in prostate cancer. Journal of Biological Chemistry. 292 (22), 9420-9430 (2017).
  4. Semenza, G. L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends in Molecular Medicine. 7 (8), 345-350 (2001).
  5. Willmer, T., Cooper, A., Peres, J., Omar, R., Prince, S. The T-Box transcription factor 3 in development and cancer. Bioscience Trends. 11 (3), 254-266 (2017).
  6. Zhu, C., Li, L., Zhao, B. The regulation and function of YAP transcription co-activator. Acta Biochim Biophys Sin (Shanghai). 47 (1), 16-28 (2015).
  7. Dang, C. V., Reddy, E. P., Shokat, K. M., Soucek, L. Drugging the ‘undruggable’ cancer targets. Nature Reviews: Cancer. 17 (8), 502-508 (2017).
  8. Fu, V., Plouffe, S. W., Guan, K. L. The Hippo pathway in organ development, homeostasis, and regeneration. Current Opinion in Cell Biology. 49, 99-107 (2017).
  9. Hansen, C. G., Moroishi, T., Guan, K. L. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends in Cell Biology. 25 (9), 499-513 (2015).
  10. Yu, F. X., Zhao, B., Guan, K. L. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell. 163 (4), 811-828 (2015).
  11. Warren, J. S. A., Xiao, Y., Lamar, J. M. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers. 10 (4), (2018).
  12. Janse van Rensburg, H. J., Yang, X. The roles of the Hippo pathway in cancer metastasis. Cellular Signalling. 28 (11), 1761-1772 (2016).
  13. Zanconato, F., Cordenonsi, M., Piccolo, S. YAP/TAZ at the Roots of Cancer. Cancer Cell. 29 (6), 783-803 (2016).
  14. Lamar, J. M., et al. SRC tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis. Journal of Biological Chemistry. 294 (7), 2302-2317 (2019).
  15. Mahoney, W. M., Hong, J. H., Yaffe, M. B., Farrance, I. K. The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochemical Journal. 388 (Pt 1), 217-225 (2005).
  16. Codelia, V. A., Sun, G., Irvine, K. D. Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Current Biology. 24 (17), 2012-2017 (2014).
  17. Cosset, E., et al. Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell. 32 (6), 856-868 (2017).
  18. de Cristofaro, T., et al. TAZ/WWTR1 is overexpressed in papillary thyroid carcinoma. European Journal of Cancer. 47 (6), 926-933 (2011).
  19. Densham, R. M., et al. MST kinases monitor actin cytoskeletal integrity and signal via c-Jun N-terminal kinase stress-activated kinase to regulate p21Waf1/Cip1 stability. Molecular and Cellular Biology. 29 (24), 6380-6390 (2009).
  20. Eda, H., Aoki, K., Marumo, K., Fujii, K., Ohkawa, K. FGF-2 signaling induces downregulation of TAZ protein in osteoblastic MC3T3-E1 cells. Biochemical and Biophysical Research Communications. 366 (2), 471-475 (2008).
  21. Elbediwy, A., et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development. 143 (10), 1674-1687 (2016).
  22. Enomoto, M., Igaki, T. Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in Drosophila. EMBO Reports. 14 (1), 65-72 (2013).
  23. Enomoto, M., Kizawa, D., Ohsawa, S., Igaki, T. JNK signaling is converted from anti- to pro-tumor pathway by Ras-mediated switch of Warts activity. Biologie du développement. 403 (2), 162-171 (2015).
  24. Fan, R., Kim, N. G., Gumbiner, B. M. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proceedings of the National Academy of Sciences of the United States of America. 110 (7), 2569-2574 (2013).
  25. Feng, R., et al. MAPK and Hippo signaling pathways crosstalk via the RAF-1/MST-2 interaction in malignant melanoma. Oncology Reports. 38 (2), 1199-1205 (2017).
  26. Fisher, M. L., et al. Transglutaminase Interaction with alpha6/beta4-Integrin Stimulates YAP1-Dependent DeltaNp63alpha Stabilization and Leads to Enhanced Cancer Stem Cell Survival and Tumor Formation. Recherche en cancérologie. 76 (24), 7265-7276 (2016).
  27. Haskins, J. W., Nguyen, D. X., Stern, D. F. Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Science Signaling. 7 (355), (2014).
  28. Hoeing, K., et al. Presenilin-1 processing of ErbB4 in fetal type II cells is necessary for control of fetal lung maturation. Biochimica et Biophysica Acta. 1813 (3), 480-491 (2011).
  29. Hwang, J. H., et al. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation. PloS One. 10 (8), e0135519 (2015).
  30. Kaneko, K., Ito, M., Naoe, Y., Lacy-Hulbert, A., Ikeda, K. Integrin alphav in the mechanical response of osteoblast lineage cells. Biochemical and Biophysical Research Communications. 447 (2), 352-357 (2014).
  31. Kim, N. G., Gumbiner, B. M. Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. Journal of Cell Biology. 210 (3), 503-515 (2015).
  32. Kuser-Abali, G., Alptekin, A., Cinar, B. Overexpression of MYC and EZH2 cooperates to epigenetically silence MST1 expression. Epigenetics. 9 (4), 634-643 (2014).
  33. Liu, N., et al. HDM2 Promotes NEDDylation of Hepatitis B Virus HBx To Enhance Its Stability and Function. Journal of Virology. 91 (16), (2017).
  34. Liu, X., et al. The EZH2- H3K27me3-DNMT1 complex orchestrates epigenetic silencing of the wwc1 gene, a Hippo/YAP pathway upstream effector, in breast cancer epithelial cells. Cellular Signalling. 51, 243-256 (2018).
  35. Omerovic, J., et al. Ligand-regulated association of ErbB-4 to the transcriptional co-activator YAP65 controls transcription at the nuclear level. Experimental Cell Research. 294 (2), 469-479 (2004).
  36. Pegoraro, S., et al. A novel HMGA1-CCNE2-YAP axis regulates breast cancer aggressiveness. Oncotarget. 6 (22), 19087-19101 (2015).
  37. Xia, H., et al. EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy. Cell Death & Disease. 9 (3), 269 (2018).
  38. Yan, F., et al. ErbB4 protects against neuronal apoptosis via activation of YAP/PIK3CB signaling pathway in a rat model of subarachnoid hemorrhage. Experimental Neurology. 297, 92-100 (2017).
  39. Aragona, M., et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 154 (5), 1047-1059 (2013).
  40. Bonilla, X., et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nature Genetics. 48 (4), 398-406 (2016).
  41. Enger, T. B., et al. The Hippo signaling pathway is required for salivary gland development and its dysregulation is associated with Sjogren’s syndrome. Laboratory Investigation. 93 (11), 1203-1218 (2013).
  42. Fausti, F., et al. ATM kinase enables the functional axis of YAP, PML and p53 to ameliorate loss of Werner protein-mediated oncogenic senescence. Cell Death and Differentiation. 20 (11), 1498-1509 (2013).
  43. He, J., et al. Positive regulation of TAZ expression by EBV-LMP1 contributes to cell proliferation and epithelial-mesenchymal transition in nasopharyngeal carcinoma. Oncotarget. 8 (32), 52333-52344 (2017).
  44. Huang, W., et al. The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFbeta-TrCP-dependent degradation in response to phosphatidylinositol 3-kinase inhibition. Journal of Biological Chemistry. 287 (31), 26245-26253 (2012).
  45. Imada, S., et al. Role of Src Family Kinases in Regulation of Intestinal Epithelial Homeostasis. Molecular and Cellular Biology. 36 (22), 2811-2823 (2016).
  46. Kim, N. G., Koh, E., Chen, X., Gumbiner, B. M. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proceedings of the National Academy of Sciences of the United States of America. 108 (29), 11930-11935 (2011).
  47. Lai, J. K. H., et al. The Hippo pathway effector Wwtr1 regulates cardiac wall maturation in zebrafish. Development. 145 (10), (2018).
  48. Li, H., Gumbiner, B. M. Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis. Mammalian Genome. 27 (11-12), 556-564 (2016).
  49. Pefani, D. E., O’Neill, E. Hippo pathway and protection of genome stability in response to DNA damage. The FEBS Journal. 283 (8), 1392-1403 (2016).
  50. Serrano, I., McDonald, P. C., Lock, F., Muller, W. J., Dedhar, S. Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nature Communications. 4, 2976 (2013).
  51. Vlug, E. J., et al. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cellular Oncology (Dordrecht). 36 (5), 375-384 (2013).
  52. Xie, Q., et al. YAP/TEAD-mediated transcription controls cellular senescence. Recherche en cancérologie. 73 (12), 3615-3624 (2013).
  53. Yee, K. S., et al. A RASSF1A polymorphism restricts p53/p73 activation and associates with poor survival and accelerated age of onset of soft tissue sarcoma. Recherche en cancérologie. 72 (9), 2206-2217 (2012).
  54. Zhou, Z., et al. Oncogenic Kinase-Induced PKM2 Tyrosine 105 Phosphorylation Converts Nononcogenic PKM2 to a Tumor Promoter and Induces Cancer Stem-like Cells. Recherche en cancérologie. 78 (9), 2248-2261 (2018).
  55. Baker, J. M., Boyce, F. M. High-throughput functional screening using a homemade dual-glow luciferase assay. Journal of Visualized Experiments. (88), (2014).
check_url/fr/60582?article_type=t

Play Video

Citer Cet Article
Xiao, Y., Lamar, J. M. Identification of Transcription Factor Regulators using Medium-Throughput Screening of Arrayed Libraries and a Dual-Luciferase-Based Reporter. J. Vis. Exp. (157), e60582, doi:10.3791/60582 (2020).

View Video