Summary

水中の摩擦を利用したアルミニウムの水素充電

Published: January 28, 2020
doi:

Summary

アルミニウム合金やアルミニウム合金に高い水素を導入する為に、水素の充電方法として水の摩擦と呼ばれる新しい方法が開発されました。

Abstract

アルミニウムの水素充電の新しい方法は、水(FW)手順の摩擦によって開発されました。この手順は、水と非酸化物被覆アルミニウムとの化学反応に基づいて、アルミニウムに大量の水素を容易に導入することができます。

Introduction

一般に、アルミニウム基合金は、鋼よりも環境水素脆化に対する耐性が高い。アルミニウム合金の水素脆化に対する高い耐性は、水素侵入を遮断する合金表面上の酸化膜によるものです。評価し、アルミニウム合金間の高脆化感度を比較するために、水素充電は、通常、機械的試験1、2、3、4、5、6、7、8、9、10、11、12、13、14の前にわれます。 15、1617.しかしながら、水素充電アルミニウムは容易でないことは知られており、カソーディック充電15などの水素充電方法を利用する場合でも、湿気16の下での緩やかな歪み速度変形、または水素プラズマガス充電17。アルミニウム合金を水素充電する難しさも、アルミニウム合金表面の酸化膜によるものです。酸化膜を水中で連続的に除去できれば、より高い量の水素をアルミニウム合金に導入できると仮定しました。熱力学的に18、酸化膜のない純粋なアルミニウムは、水と容易に反応し、水素を生成する。これに基づき、水と非酸化物アルミニウムの化学反応を踏まえたアルミニウム合金の水素充電法を新たに開発しました。この方法は、アルミニウム合金に多量の水素を簡単に添加することができる。

Protocol

1. 材料の準備 1質量%Mgと0.8質量%Si(Al-Mg-Si)を含むアルミニウム-マグネシウムシリコン合金で作られた1ミリメートルの厚いプレートを使用してください。 ゲージ長さ10mm、幅5mmのAl-Mg-Si合金板から試験片を作成します。 試験片を空気炉を用いて1時間520°Cでアニールする。溶液熱処理として水にクエンチ。 試験片を175°Cで18時間の間でアニールし、ピークエージング?…

Representative Results

FW法による水素発生・吸収図2は、鉄の量が0.1質量%から0.7質量%までの鉄を含むAl-Mg-Si合金のFW法における水素発生挙動を示す。攪拌機が回転し始めると、試料は連続して大量の水素を放出した。これは、合金表面と水との摩擦によって生じた化学反応によって水素が発生したことを示唆している。さらに、FW手順中の水の pH 値は、図 …

Discussion

FWのプロシージャの1つの重要な側面は磁気スターラーに2つの標本の付着である。スターラーバーの中心は非摩擦帯となるため、スターラーバーの中心にある試料の付着を避けるのが最善です。

攪拌バーの回転速度の制御も重要です。速度が240rpmを超える場合には、磁気攪拌機のステージ上で反応容器を維持することが困難となる。FW手順が高速で行われる場合、磁気攪?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

この作品は、株式会社ライトメタル教育財団(大阪府)の財政的支援を受けています。

Materials

Air furnace GC QC-1
Aluminum alloy plates Kobe Steel Al/1.0 mass% Mg/0.8 mass% Si
Electric balance A&D HR-200
Glass container Custom made
Magnetic stirrer CORNING PC-410D
Optical Comparator NIKON V-12B
pH meter Sato Tech PH-230SDJ
Quartz tube Custom made
Rotary polishing machine IMT IM-P2
Secondary electrom microscope JOEL JSM-5310LV
Sensor gas chromatograph FIS Inc. SGHA
Silicon carbide emery paper IMT 531SR
Tensile testing machine Toshin Kogyo SERT-5000-C
Tubular furnace Honma Riken Custom made

References

  1. Horikawa, K., Matsubara, T., Kobayashi, H. Hydrogen charging of Al-Mg-Si-based alloys by friction in water and its effect on tensile properties. Materials Science and Engineering A. 764, 138199 (2019).
  2. Horikawa, K. Current research trends in aluminum alloys for a high-pressure hydrogen gas container. Journal of Japan Institute of Light Metals. 60, 542-547 (2010).
  3. Kuramoto, S., Hsieh, M. C., Kanno, M. Environmental embrittlement of Al-Mg-Si base alloys deformed at low strain rates in laboratory air. Journal of Japan Institute of Light Metals. 52, 250-255 (2002).
  4. Horikawa, K., Yoshida, K. Visualization of Hydrogen in Tensile-Deformed Al-5%Mg Alloy by means of Hydrogen Microprint Technique with EBSP Analysis. Materials Transactions. 45, 315-318 (2004).
  5. Ueda, K., Horikawa, K., Kanno, M. Suppression of high temperature embrittlement of Al-5%Mg alloys containing a trace of sodium caused by antimony addition. Scripta Materialia. 37, 1105-1110 (1996).
  6. Horikawa, K., Ando, N., Kobayashi, H., Urushihara, W. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions. Materials Science and Engineering A. 534, 495-503 (2012).
  7. Horikawa, K., Yamada, H., Kobayashi, H. Effect of strain rate on hydrogen gas evolution behavior during tensile deformation in 6061 and 7075 aluminum alloys. Journal of Japan Institute of Light Metals. 62, 306-312 (2012).
  8. Horikawa, K., Okada, H., Kobayashi, H., Urushihara, W. Visualization of diffusive hydrogen in low alloy steel by means of hydrogen microprint technique at elevated temperatures. Materials Transactions. 50, 759-764 (2009).
  9. Horikawa, K., Okada, H., Kobayashi, H., Urushihara, W. Visualization of hydrogen during fatigue fracture in an Al-Mg-Si alloy. Journal of Japan Institute of Light Metals. 56, 210-213 (2006).
  10. Horikawa, K., Okada, H., Kobayashi, H., Urushihara, W. Visualization of hydrogen distribution in tensile-deformed Al-5%Mg alloy investigated by means of hydrogen microprint technique with EBSP. Journal of the Japan Institute of Metals. 68, 1043-1046 (2004).
  11. Yamada, H., Tsurudome, M., Miura, N., Horikawa, K., Ogasawara, N. Ductility loss of 7075 aluminum alloys affected by interaction of hydrogen, fatigue deformation, and strain rate. Materials Science and Engineering A. 642, 194-203 (2015).
  12. Toda, H., et al. Effects of hydrogen micro pores on mechanical properties in a 2024 aluminum alloys. Materials Transactions. 54, 2195-2201 (2013).
  13. Yamada, H., Horikawa, K., Matsumoto, T., Kobayashi, H., Ogasawara, N. Hydrogen evolution behavior of tensile deformation process in 6061 and 7075 aluminum alloys. Journal of Japan Institute of Light Metals. 61, 297-302 (2011).
  14. Horikawa, K., Kobayashi, H. Hydrogen absorption of pure aluminum by friction of the surface in water and its effect on tensile properties. Journal of the Japan Institute of Metals. 84, (2020).
  15. Suzuki, H., Kobayashi, D., Hanada, N., Takai, K., Hagihara, Y. Existing state of hydrogen in electrochemically charged commercial-purity aluminum and its effects on tensile properties. Materials Transactions. 52, 1741-1747 (2011).
  16. Horikawa, K., Hokazono, S., Kobayashi, H. Synchronized monitoring between hydrogen gas release and progress of atmospheric hydrogen embrittlement in 7075 aluminum alloy. Journal of Japan Institute of Light Metals. 66, 77-83 (2016).
  17. Manaka, T., Aoki, M., Itoh, G. Thermal desorption spectroscopy study on the hydrogen behavior in a plasma-charged aluminum. Materials Science Forum. 879, 1220-1225 (2016).
  18. Ellingham, H. J. T. Reducibility of oxides and sulphides in metallurgical processes. Journal of the Society of Chemical Industry. 63, 125-133 (1944).
  19. Pourbaix, M. . Atlas of electrochemical equilibria in aqueous solutions, Ist ed. , 168-176 (1966).
  20. Young, G. A., Scully, J. R. The diffusion and trapping of hydrogen in high purity aluminum. Acta Materialia. 46, 6337-6349 (1998).
  21. Smith, S. W., Scully, J. R. The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy. Metallurgical and Materials Transactions A. 31, 179-193 (2000).
check_url/fr/60711?article_type=t

Play Video

Citer Cet Article
Horikawa, K., Kobayashi, H. Hydrogen Charging of Aluminum using Friction in Water. J. Vis. Exp. (155), e60711, doi:10.3791/60711 (2020).

View Video