Summary

活体和功能性鼠耳蜗毛细胞中的德特贴标签和吸收

Published: February 08, 2020
doi:

Summary

在这里,我们提出了一种方法,用于可视化3 kDa德州红标dextran在听觉毛细胞与功能性干扰诱导通道的吸收。此外,3~10 kDa的分泌器可用于研究毛发和Corti器官支持细胞的内分泌。

Abstract

发细胞调子(MET)通道在听力中起着重要的作用。然而,MET的分子特性和结构信息仍然未知。对毛细胞的电生理学研究表明,MET通道具有较大的导导率,可渗透到相对较大的荧光阳离子分子,包括一些styryl染料和德州红标氨基糖苷抗生素。在此协议中,我们描述了一种可视化和评估 Corti 外植器官毛细胞中荧光分管的产生情况的方法,该方法可用于功能 MET 通道的测定。我们发现,3 kDa德州红标记dextran特别标记功能听觉毛细胞后1⁄2小时孵育。特别是,3 kDa dextran 标记两个较短的立体细胞行,并在存在功能 MET 通道时以漫反射模式在细胞体中累积。在毛细胞和周围支持细胞的细胞体中观察到了一种类似囊泡的标记模式。我们的数据表明,3 kDa德州红dextran可用于可视化和研究细胞染料摄入的两种途径;通过功能MET通道和内分泌的毛细胞特定进入途径,这种模式也可用于更大的dextran。

Introduction

内耳毛细胞是检测声音和隐藏电信号机械刺激的感官细胞,最终由我们的大脑解释。这些细胞有一个楼梯形的捆绑三行基于活性蛋白的细丝,称为立体丝,从它们的锥形区域1,2突出。机械刺激使立体丝向最长的行偏转,并触发机械转导(MET)通道3的打开。MET通道的开放导致阳离子的涌入,使细胞去极化,从而在头发细胞的基础区域发出突触囊泡的释放。

MET通道对听力至关重要的生物物理特性得到了广泛的描述。在其他属性中,这些通道是阳离子选择性的,具有相对较大的电导率(低 Ca2+中为 150±300 pS)4、5、6、7、8、9、10 。值得注意的是,大型荧光分子,如FM1-43和得克萨斯红标记氨胶苷是MET通道的渗透阻滞剂,导致其积累在头发细胞体,可以使用荧光显微镜11,12,13,14。相反,MET通道的分子特性和结构及其渗透途径仍然难以捉摸。越来越多的实验证据表明,跨膜样通道蛋白1(TMC1)是成熟毛细胞15、16、17、18、19中MET通道的组成部分。跨膜状通道1(TMC1)中的突变会改变MET通道特性19、20、21、22,并引起耳聋。此外,TMC1还本地化到MET通道18、23站点,并与负责将机械力传输到MET通道24、25的尖端链路进行交互。此外,最近的生物信息学分析已经发现TMC蛋白是进化相关的对美甲敏感通道TMEM63/OSCA蛋白质和TMEM16蛋白质,钙活性氯化物通道和脂质scramblass26,27,28。基于这些蛋白质之间关系的TMC1结构模型揭示了在蛋白质-脂质界面27处存在一个大腔。该腔包含两个TMC1突变,导致常染色体显性听力损失(DFNA36)27、29、30、31、32,以及选择性地修饰半胱氨酸突变体,使其在腔内残留物改变MET通道特性28,表明它可以作为MET通道的渗透通路。TMC蛋白质中这种预测腔的较大尺寸可以解释大分子渗透MET通道的能力。为了测试MET通道包含异常大渗透通路的预测,并突破TMC1中观察到的腔体大小的极限,我们开发了一个协议,在Corti外植的器官中用更大的分子进行吸收实验,3 kDa dextran荧光标记为德州红。

Dextran是一种复杂的分枝多糖,由许多D-葡萄糖分子组成,由α-1,6糖碱基结结合。其高溶性在水中,低细胞毒性,和生物不性使其成为研究多种细胞过程的多功能工具。此外,dextran 有多种尺寸可供选择,并带有多种颜色的荧光标记。荧光标记的dextrans通常用于细胞和组织渗透性研究33,34,研究多细胞系统35,36的内分泌,以及神经追踪37,38。在听觉领域,dextran分子也被用来评估细胞-细胞结的中断和听觉感觉上皮完整性的丧失后暴露于Corti39,40的chinchilla器官的强烈噪音。

在这项工作中,我们利用一些最小的(3和10 kDa)荧光除变性器的特性,在鼠内耳毛细胞中进行吸收实验,并探索内耳毛细胞MET通道的渗透通路的大小。此外,我们使用激光扫描共聚焦显微镜(LSM)880配备了Airyscan探测器,以可视化和本地化荧光dextran在立体神经和听觉毛细胞的细胞体。

Protocol

动物护理和实验程序按照《实验室动物护理和使用指南》进行,该准则经国家神经疾病和中风研究所动物护理和使用委员会批准(动物协议#1336到KJS)。 1. 老鼠 设置一对C57BL/6J野生型的繁殖对在动物设施中繁殖,以控制幼崽的出生日期,并跟踪幼崽的年龄。 2. 耳蜗解剖 设置一个靠近立体显微镜的清洁空间以执行解剖(?…

Representative Results

我们观察到,在野生型产后6(P6)小鼠的Corti外体器官孵育2小时后,毛细胞的强健和特殊标记,3 kDa dextran荧光标记有德州红(dextran-TR)(图2A-B)。在Corti器官的基底、中、顶区域(图2B)的内侧和外发细胞(IHC和OHC)中观察到了Dextran标记。 荧光标记的phalloidin用于对抗丝状物(F-actin)和可视化基于功能素…

Discussion

该协议描述了如何在3 kDa dextran德州红的Corti外植植物的鼠器官中执行接受实验。这种方法的目的是测试之前测试的分子是否也能够专门标记听觉毛细胞,并渗透到MET通道。类似的实验方案以前曾用于评估毛细胞与其他荧光染料的渗透性,如FM1-43(0.56 kDa)12、19、20和得克萨斯州红标记的氨糖苷(1.29~1.43 kDa)13、52。<sup c…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢NICHD显微镜和成像核心的文森特·施拉姆协助共聚焦图像采集,以及张青惠在殖民地管理和小鼠护理方面的宝贵帮助。这项研究得到了国家研究所、NIH、贝塞斯达、医学博士、K.J.S.A.B.的内学研究计划的支持,并得到了国立国家研究所内学研究计划的罗伯特·温特霍尔德博士后奖学金的支持。NIDCD。

Materials

#1.5 glass coverslips 18mm Warner Instruments 64-0714
Alexa Fluor 488 Phalloidin ThermoFisher A12379
Alexa Fluor 594 Phalloidin ThermoFisher A12381
alpha Plan-Apochromat 63X/1.4 Oil Corr M27 objective Carl Zeiss 420780-9970-000
Amiloride hydrochloride EMD MILLIPORE 129876
Benchwaver 3-dimensional Rocker Benchmarks scientific B3D5000
C57BL/6J wild-type mice strain 000664 The Jackson Laboratory
Cell impermeant BAPTA tetrapotassium salt ThermoFisher B1204
Dextran, Fluorescein, 10,000 MW, Anionic, Lysine Fixable ThermoFisher D1820
Dextran, Texas Red, 10,000 MW, Lysine Fixable ThermoFisher D1863
Dextran, Texas Red, 3000 MW, Lysine Fixable ThermoFisher D3328
Formaldehyde Aqueous Solution EM Grade Electron microscopy science 15710
HBSS, calcium, magnesium, no phenol red ThermoFisher 14025
HBSS, no calcium, no magnesium, no phenol red ThermoFisher 14170
Image J or FIJI NIH http://fiji.sc/
Immersol 518F oil immersion media Carl Zeiss 444970-9000-000
Leibovitz's L-15 Medium, GlutaMAX Supplement ThermoFisher 31415029
neomycin trisulfate salt hydrate Sigma N6386
PBS (10X), pH 7.4 ThermoFisher 70011069
Phalloidin-CF405M Biotium 00034
ProLong Diamond antifade mounting media ThermoFisher P36970
superfrost plus microscope slide Fisherbrand 22-037-246
Triton X-100 Sigma T8787
Zen Black 2.3 SP1 software Carl Zeiss https://www.zeiss.com/microscopy/us/products/microscope-software/zen.html

References

  1. Furness, D. N., Hackney, C. M. . The Structure and Composition of the Stereociliary Bundle of Vertebrate Hair Cells. , (2006).
  2. Barr-Gillespie, P. G. Assembly of hair bundles, an amazing problem for cell biology. Molecular Biology of the Cell. 26 (15), 2727-2732 (2015).
  3. Shotwell, S. L., Jacobs, R., Hudspeth, A. J. Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Annals of the New York Academy of Sciences. 374, 1-10 (1981).
  4. Fettiplace, R., Kim, K. X. The physiology of mechanoelectrical transduction channels in hearing. Physiological Reviews. 94 (3), 951-986 (2014).
  5. Fettiplace, R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Comprehensive Physiology. 7 (4), 1197-1227 (2017).
  6. Corey, D. P., Hudspeth, A. J. Ionic basis of the receptor potential in a vertebrate hair cell. Nature. 281 (5733), 675-677 (1979).
  7. Beurg, M., Evans, M. G., Hackney, C. M., Fettiplace, R. A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells. The Journal of Neuroscience. 26 (43), 10992-11000 (2006).
  8. Geleoc, G. S., Lennan, G. W., Richardson, G. P., Kros, C. J. A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proceedings of the Royal Society B: Biological Sciences. 264 (1381), 611-621 (1997).
  9. Kros, C. J., Rusch, A., Richardson, G. P. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proceedings of the Royal Society B: Biological Sciences. 249 (1325), 185-193 (1992).
  10. Ohmori, H. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. The Journal of Physiology. 359, 189-217 (1985).
  11. Gale, J. E., Marcotti, W., Kennedy, H. J., Kros, C. J., Richardson, G. P. FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. The Journal of Neuroscience. 21 (18), 7013-7025 (2001).
  12. Lelli, A., Asai, Y., Forge, A., Holt, J. R., Geleoc, G. S. Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. Journal of Neurophysiology. 101 (6), 2961-2973 (2009).
  13. Alharazneh, A., et al. Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PLoS One. 6 (7), 22347 (2011).
  14. Marcotti, W., van Netten, S. M., Kros, C. J. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. The Journal of Physiology. 567, 505-521 (2005).
  15. Corns, L. F., Jeng, J. Y., Richardson, G. P., Kros, C. J., Marcotti, W. TMC2 Modifies Permeation Properties of the Mechanoelectrical Transducer Channel in Early Postnatal Mouse Cochlear Outer Hair Cells. Frontiers in Molecular Neuroscience. 10, 326 (2017).
  16. Kawashima, Y., Kurima, K., Pan, B., Griffith, A. J., Holt, J. R. Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation. Pflügers Archiv: European Journal of Physiology. 467 (1), 85-94 (2015).
  17. Kim, K. X., Fettiplace, R. Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins. The Journal of General Physiology. 141 (1), 141-148 (2013).
  18. Kurima, K., et al. TMC1 and TMC2 Localize at the Site of Mechanotransduction in Mammalian Inner Ear Hair Cell Stereocilia. Cell Reports. 12 (10), 1606-1617 (2015).
  19. Pan, B., et al. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron. 79 (3), 504-515 (2013).
  20. Kawashima, Y., et al. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. Journal of Clinical Investigation. 121 (12), 4796-4809 (2011).
  21. Beurg, M., Goldring, A. C., Fettiplace, R. The effects of Tmc1 Beethoven mutation on mechanotransducer channel function in cochlear hair cells. The Journal of General Physiology. 146 (3), 233-243 (2015).
  22. Corns, L. F., Johnson, S. L., Kros, C. J., Marcotti, W. Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells. The Journal of Neuroscience. 36 (2), 336-349 (2016).
  23. Beurg, M., Fettiplace, R., Nam, J. H., Ricci, A. J. Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nature Neuroscience. 12 (5), 553-558 (2009).
  24. Maeda, R., et al. Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proceedings of the National Academy of Sciences of the United States of America. 111 (35), 12907-12912 (2014).
  25. Assad, J. A., Shepherd, G. M., Corey, D. P. Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron. 7 (6), 985-994 (1991).
  26. Medrano-Soto, A., et al. Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS One. 13 (3), 0192851 (2018).
  27. Ballesteros, A., Fenollar-Ferrer, C., Swartz, K. J. Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. Elife. 7, (2018).
  28. Pan, B., et al. TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron. 99 (4), 736-753 (2018).
  29. Kitajiri, S., Makishima, T., Friedman, T. B., Griffith, A. J. A novel mutation at the DFNA36 hearing loss locus reveals a critical function and potential genotype-phenotype correlation for amino acid-572 of TMC1. Clinical Genetics. 71 (2), 148-152 (2007).
  30. Makishima, T., Kurima, K., Brewer, C. C., Griffith, A. J. Early onset and rapid progression of dominant nonsyndromic DFNA36 hearing loss. Otology & Neurotology. 25 (5), 714-719 (2004).
  31. Noguchi, Y., et al. Multiple quantitative trait loci modify cochlear hair cell degeneration in the Beethoven (Tmc1Bth) mouse model of progressive hearing loss DFNA36. Génétique. 173 (4), 2111-2119 (2006).
  32. Vreugde, S., et al. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nature Genetics. 30 (3), 257-258 (2002).
  33. Hulstrom, D., Svensjo, E. Intravital and electron microscopic study of bradykinin-induced vascular permeability changes using FITC-dextran as a tracer. The Journal of Pathology. 129 (3), 125-133 (1979).
  34. Mayhan, W. G., Heistad, D. D. Permeability of blood-brain barrier to various sized molecules. American Journal of Physiology. 248 (5), 712-718 (1985).
  35. Makarow, M. Endocytosis in Saccharomyces cerevisiae: internalization of alpha-amylase and fluorescent dextran into cells. The EMBO Journal. 4 (7), 1861-1866 (1985).
  36. Clayton, E. L., Cousin, M. A. Quantitative monitoring of activity-dependent bulk endocytosis of synaptic vesicle membrane by fluorescent dextran imaging. Journal of Neuroscience Methods. 185 (1), 76-81 (2009).
  37. Allman, B. L., Keniston, L. P., Meredith, M. A. Adult deafness induces somatosensory conversion of ferret auditory cortex. Proceedings of the National Academy of Sciences of the United States of America. 106 (14), 5925-5930 (2009).
  38. Warr, W. B., Boche, J. B., Neely, S. T. Efferent innervation of the inner hair cell region: origins and terminations of two lateral olivocochlear systems. Hearing Research. 108 (1-2), 89-111 (1997).
  39. Hu, B. H., Zheng, G. L. Membrane disruption: an early event of hair cell apoptosis induced by exposure to intense noise. Brain Research. 1239, 107-118 (2008).
  40. Zheng, G., Hu, B. H. Cell-cell junctions: a target of acoustic overstimulation in the sensory epithelium of the cochlea. BMC Neuroscience. 13, 71 (2012).
  41. Beurg, M., Nam, J. H., Chen, Q., Fettiplace, R. Calcium balance and mechanotransduction in rat cochlear hair cells. Journal of Neurophysiology. 104 (1), 18-34 (2010).
  42. Johnson, S. L., Beurg, M., Marcotti, W., Fettiplace, R. Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant. Neuron. 70 (6), 1143-1154 (2011).
  43. Korobchevskaya, K., Lagerholm, B. C., Colin-York, H., Fritzsche, M. Exploring the Potential of Airyscan Microscopy for Live Cell Imaging. Photonics. 4 (3), (2017).
  44. Gil-Loyzaga, P., Brownell, W. E. Wheat germ agglutinin and Helix pomatia agglutinin lectin binding on cochlear hair cells. Hearing Research. 34 (2), 149-155 (1988).
  45. Santi, P. A., Anderson, C. B. Alcian blue staining of cochlear hair cell stereocilia and other cochlear tissues. Hearing Research. 23 (2), 153-160 (1986).
  46. Slepecky, N., Chamberlain, S. C. The cell coat of inner ear sensory and supporting cells as demonstrated by ruthenium red. Hearing Research. 17 (3), 281-288 (1985).
  47. Rusch, A., Kros, C. J., Richardson, G. P. Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures. The Journal of Physiology. 474 (1), 75-86 (1994).
  48. Zhao, Y., Yamoah, E. N., Gillespie, P. G. Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proceedings of the National Academy of Sciences of the United States of America. 93 (26), 15469-15474 (1996).
  49. Indzhykulian, A. A., et al. Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. PLoS Biol. 11 (6), 1001583 (2013).
  50. Koivusalo, M., et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. Journal of Cell Biology. 188 (4), 547-563 (2010).
  51. West, M. A., Bretscher, M. S., Watts, C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. Journal of Cell Biology. 109 (6), 2731-2739 (1989).
  52. Park, S., et al. tmie Is required for gentamicin uptake by the hair cells of mice. Comp Med. 63 (2), 136-142 (2013).
  53. Meyers, J. R., et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. The Journal of Neuroscience. 23 (10), 4054-4065 (2003).
  54. Waguespack, J., Salles, F. T., Kachar, B., Ricci, A. J. Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells. The Journal of Neuroscience. 27 (50), 13890-13902 (2007).
  55. Beurg, M., et al. Variable number of TMC1-dependent mechanotransducer channels underlie tonotopic conductance gradients in the cochlea. Nature Communications. 9 (1), 2185 (2018).
  56. Montgomery, S. C., Cox, B. C. Whole Mount Dissection and Immunofluorescence of the Adult Mouse Cochlea. Journal of Visualized Experiments. (107), e53561 (2016).
  57. Landegger, L. D., Dilwali, S., Stankovic, K. M. Neonatal Murine Cochlear Explant Technique as an In Vitro Screening Tool in Hearing Research. Journal of Visualized Experiments. (124), e55704 (2017).
  58. May-Simera, H. Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea. Journal of Visualized Experiments. (108), e53559 (2016).
  59. Ogier, J. M., Burt, R. A., Drury, H. R., Lim, R., Nayagam, B. A. Organotypic Culture of Neonatal Murine Inner Ear Explants. Frontiers in Cellular Neuroscience. 13, 170 (2019).
  60. Granath, K. A. Solution properties of branched dextrans. Journal of Colloid Science. 13 (4), 20 (1958).
  61. Molecular Probes, I.D.T. . Product information on Dextran Conjugates. , (2006).
  62. Korobchevskaya, K., Lagerholm, B. C., Colin-York, H., Fritzsche, M. Exploring the Potential of Airyscan Microscopy for Live Cell Imaging. Photonics. 4 (3), 41 (2017).
check_url/fr/60769?article_type=t

Play Video

Citer Cet Article
Ballesteros, A., Swartz, K. J. Dextran Labeling and Uptake in Live and Functional Murine Cochlear Hair Cells. J. Vis. Exp. (156), e60769, doi:10.3791/60769 (2020).

View Video