Summary

生产自体富血小板血浆以促进体外人成纤维细胞扩增

Published: February 24, 2021
doi:

Summary

该协议提出了一种产生PRP以促进100%自体成纤维细胞培养系统中细胞体外扩增的装置。

Abstract

目前,临床上对使用自体成纤维细胞进行皮肤修复有很大的兴趣。在大多数情况下,需要在体外培养皮肤细胞。然而,使用异种或同种异体培养基的细胞培养有一些缺点(即感染因子传播或细胞扩增缓慢的风险)。在这里,开发了一种自体培养系统,用于使用患者自身的富血小板血浆(PRP)在体外扩增人类皮肤成纤维细胞。在进行腹部成形术时,从患者身上分离出人真皮成纤维细胞。使用补充有胎牛血清 (FBS) 或 PRP 的培养基随访培养物长达 7 天。评估PRP制剂中的血细胞含量、增殖和成纤维细胞分化。该协议描述了使用专用医疗设备获得标准化,非活化PRP制剂的方法。该制剂只需要一个医疗设备(CuteCell-PRP)和离心机。该装置适用于足够的医疗实践条件,是一种一步法、无热原和无菌封闭系统,需要 1,500 x g 的单次软旋转离心 5 分钟。离心后,血液成分被分离,富血小板血浆很容易收集。该装置可实现快速、一致和标准化的PRP制备,可用作人体细胞体外扩增的细胞培养补充剂。这里获得的PRP含有1.5倍的血小板浓度,与全血相比,优先去除红细胞和白细胞。结果表明,与FBS(7.7x)相比,PRP在细胞增殖中表现出促进作用,并且在PRP处理后成纤维细胞被激活。

Introduction

再生医学旨在治愈或替换因年龄、疾病或创伤而受损的组织和器官,并纠正先天性缺陷。在自体治疗中,从患者身上取出细胞或组织,扩增或修饰,然后重新引入供体。这种形式的疗法在皮肤病学领域具有广泛的潜力1。在自体成纤维细胞治疗中,对患者的成纤维细胞进行培养并重新注射以治疗皱纹、鼻痘或痤疮疤痕。由于成纤维细胞是真皮中的主要功能细胞,因此注射自体成纤维细胞可能比其他疗法更有益于面部年轻化2

在皮肤中,成纤维细胞负责细胞外蛋白(即胶原蛋白、弹性蛋白、透明质酸和糖胺聚糖)的合成和分泌。它们还释放生长因子,调节正常皮肤稳态和伤口愈合中的细胞功能、迁移和细胞-基质/细胞-细胞相互作用3。皮肤成纤维细胞已被引入为一种潜在的临床细胞疗法,用于皮肤伤口愈合4,组织再生5或美容和整形外科手术中的皮肤填充剂6。一些研究甚至表明,在再生医学的背景下,成纤维细胞可能比间充质干细胞更实用和有效的细胞疗法7

为了获得足够数量的成纤维细胞用于临床应用,细胞扩增通常是强制性的。体外/体外细胞培养需要补充生长因子、蛋白质和酶的基础培养基来支持细胞粘附和增殖。胎牛血清(FBS)是细胞培养基的常用补充剂,因为胎儿血液1)与成人血液相比富含生长因子,2)抗体含量低8。随着细胞治疗的进展,人们担心将FBS添加到培养基中的经典细胞培养条件的安全性。此外,现在有一种用替代品9取代FBS的趋势。几种FBS替代品已显示出有希望的结果10

这里选择了富血小板血浆(PRP)替代品,我们开发了一种医疗设备来生产PRP的标准化制剂,名为CuteCell-PRP。该装置的预期用途是制备自体PRP,用作GMP条件下自体细胞体外扩增的培养基补充剂。

PRP被定义为血浆中的浓缩血小板悬浮液。由于有许多制备方案,它们在1)所需的血液量,2)使用的装置类型和3)离心方案方面有所不同,因此所得血小板浓度从略高于血液基线值的10倍到超过10倍不等。此外,PRP制剂含有不同水平的红细胞和白细胞污染。因此,术语“PRP”用于描述其生物成分和潜在治疗效果差异很大的产品。

在大多数研究中,FBS替代是使用不同浓度的PRP激活(通过凝血酶或钙)实现的。这种人工激活引起血小板生长因子从15分钟到24小时11的立即和重要的释放。因此,据信血小板活化对于细胞培养中的应用是不希望的,其中需要从逐渐的血小板脱颗粒中缓慢释放生长因子。

PRP治疗涉及在浓缩血浆中制备自体血小板12。最佳血小板浓度尚不清楚,有多种商业设备可用于制备PRP13。这种缺乏标准化是由于研究之间的不一致造成的,并导致了关于注射剂量和时间的黑匣子。该协议描述了使用这种专用PRP装置获得自体PRP的程序,以在100%自体离体培养模型中扩增皮肤成纤维细胞。

Protocol

研究方案符合赫尔辛基宣言,所有患者在参与研究前都提供了书面知情同意书。皮肤样本来自在日内瓦大学医院(瑞士日内瓦)整形、重建和美容外科接受腹部整形术的健康女性。该程序符合《赫尔辛基宣言》的原则,并得到了当地机构伦理委员会的批准(协议#3126)。 1. 准备PRP 注意:CuteCell-PRP 管(材料表)设计用于在闭路系统中从少量患者…

Representative Results

这项专利技术是一种简单、快速且可重复的医疗设备,用于生产标准化的 PRP 制剂。这是一个一步法,全封闭系统,允许在以1,500 x g 离心5分钟后从静脉全血制备PRP(由于分离凝胶技术)。离心后获得的PRP从位于凝胶下方的红细胞和白细胞中清除。经过几次试管倒置后,凝胶顶部的血小板重新悬浮在血浆中,PRP即可使用(图1)。 为了评估制剂中?…

Discussion

与伤口细胞治疗中的其他填充材料相比,使用自体成纤维细胞作为天然替代品的优点包括良好的生物相容性、最小的副作用以及易于收获和使用。然而,在日常临床环境中使用这些疗法之前,有必要进行适当的临床前研究,以确定移植前后分离成纤维细胞的生长特征并评估其生物学功能和安全性。因此,在分离过程之后,必须快速进行细胞的体外扩增,以限制细胞分裂的次数。必须严格控制培养?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢Grégory Schneiter先生在流式细胞术数据方面的技术援助;Muriel Cuendet教授(药学院和日内瓦大学生药学实验室)允许使用Atune流式细胞仪和Cytation 3高通量显微镜;Brigitte Pittet教授提供科学建议。

Materials

96 well black clear flat bottom BD Falcon 353219 32/case
Cell trace Violet Dye Thermo Fischer Scientific C34557 180 assays
CuteCell PRP Regen Lab SA CC-PRP-3T 3 tubes per package
DAPI Sigma D9542 1 mg
DMEM Gibco 52400-025 500 mL
FBS Gibco 10270106 500 mL
Glutamine 200 mM Gibco 25030024 100 mL
Hematology Counter Sysmex KK-21N
Heparin 5000E Liquemine Drossapharm AG 0.5 mL
HEPES Buffer Solution 1M Gibco 15630-056 100 mL
Liberase DH Roche 5401054001 2x 5 mg per package
MEM NEAA 100x Gibco 11140-035 100 mL
Na Pyruvate 1mg/mL Gibco 11360-039 100 mL
Penicillin streptomycin Gibco 15140122 100 mL
Phalloidin alexa Fluor 488 Molecular Probes A12379 300 units
RPMI Gibco 31966-021 500 mL
Trypsin 1x 0.25% Gibco 25050-014 100 mL
Trypsin EDTA 0.25% Gibco 25200056 100 mL

References

  1. Kumar, S., Mahajan, B. B., Kaur, S., Singh, A. Autologous therapies in dermatology. The Journal of Clinical and Aesthetic Dermatology. 7 (12), 38-45 (2014).
  2. Martin, I., et al. The survey on cellular and engineered tissue therapies in Europe in 2009. Tissue Engineering. Part A. 17 (17-18), 2221-2230 (2011).
  3. Stunova, A., Vistejnova, L. Dermal fibroblasts-A heterogeneous population with regulatory function in wound healing. Cytokine & Growth Factor Reviews. 39, 137-150 (2018).
  4. Thangapazham, R. L., Darling, T. N., Meyerle, J. Alteration of skin properties with autologous dermal fibroblasts. International Journal of Biological Sciences. 15 (5), 8407-8427 (2014).
  5. Costa-Almeida, R., Soares, R., Granja, P. L. Fibroblasts as maestros orchestrating tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine. 12 (1), 240-251 (2018).
  6. Weiss, R. A. Autologous cell therapy: will it replace dermal fillers. Facial Plastic Surgery Clinics of North America. 21 (2), 299-304 (2013).
  7. Ichim, T. E., O’Heeron, P., Kesari, S. Fibroblasts as a practical alternative to mesenchymal stem cells. Journal of Translational Medicine. 16 (1), 212 (2018).
  8. Gstraunthaler, G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX. 20 (4), 275-281 (2003).
  9. Karnieli, O., et al. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy. 19 (2), 155-169 (2017).
  10. van der Valk, J., et al. Fetal Bovine Serum (FBS): Past – Present – Future. ALTEX. 35 (1), 99-118 (2018).
  11. Cavallo, C., et al. Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules. BioMed Research International. 2016, 6591717 (2016).
  12. Peng, G. L. Platelet-Rich Plasma for Skin Rejuvenation: Facts, Fiction, and Pearls for Practice. Facial Plastic Surgery Clinics of North America. 27 (3), 405-411 (2019).
  13. Fadadu, P. P., Mazzola, A. J., Hunter, C. W., Davis, T. T. Review of concentration yields in commercially available platelet-rich plasma (PRP) systems: a call for PRP standardization. Regional Anesthesia and Pain Medicine. 44, 652-659 (2019).
  14. Berndt, S., Turzi, A., Pittet-Cuenod, B., Modarressi, A. Autologous Platelet-Rich Plasma (CuteCell PRP) Safely Boosts In Vitro Human Fibroblast Expansion. Tissue Engineering. Part A. 25 (21-22), 1550-1563 (2019).
  15. Zeng, W., et al. Preclinical safety studies on autologous cultured human skin fibroblast transplantation. Cell Transplantation. 23 (1), 39-49 (2014).
  16. Lee, E. C. R., et al. Efficacy of Autologous Cultured Fibroblast Cells as a Treatment for Patients with Facial Contour Defects: A Clinical Replication Study. Journal of Cosmetics, Dermatological Sciences and Applications. 7, 306-317 (2017).
  17. Eca, L. P., Pinto, D. G., de Pinho, A. M., Mazzetti, M. P., Odo, M. E. Autologous fibroblast culture in the repair of aging skin. Dermatologic Surgery. 38 (2), 180-184 (2012).
  18. Nilforoushzadeh, M. A., et al. Autologous fibroblast suspension for the treatment of refractory diabetic foot ulcer. Indian Journal of Dermatology, Venereology and Leprology. 82 (1), 105-106 (2016).
  19. Cowper, M., et al. Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells. 8 (7), 724 (2019).
  20. Atashi, F., Jaconi, M. E., Pittet-Cuenod, B., Modarressi, A. Autologous platelet-rich plasma: a biological supplement to enhance adipose-derived mesenchymal stem cell expansion. Tissue Engineering Part C: Methods. 21 (3), 253-262 (2015).
  21. Martinez-Zapata, M. J., et al. Autologous platelet-rich plasma for treating chronic wounds. The Cochrane Database of Systematic Reviews. (5), (2016).
  22. Cervelli, V., et al. Use of platelet-rich plasma and hyaluronic acid in the loss of substance with bone exposure. Advances in Skin & Wound Care. 24 (4), 176-181 (2011).
  23. Nicoli, F., et al. Severe hidradenitis suppurativa treatment using platelet-rich plasma gel and Hyalomatrix. International Wound Journal. 12 (3), 338-343 (2015).
  24. Gentile, P., Bottini, D. J., Spallone, D., Curcio, B. C., Cervelli, V. Application of platelet-rich plasma in maxillofacial surgery: clinical evaluation. The Journal of Craniofacial Surgery. 21 (3), 900-904 (2010).
  25. Saleem, M., et al. Adjunctive Platelet-Rich Plasma (PRP) in Infrabony Regenerative Treatment: A Systematic Review and RCT’s Meta-Analysis. Stem Cells International. 2018, 9594235 (2018).
  26. Everts, P. A., Pinto, P. C., Girao, L. Autologous pure platelet-rich plasma injections for facial skin rejuvenation: Biometric instrumental evaluations and patient-reported outcomes to support antiaging effects. Journal of Cosmetic Dermatology. 18 (4), 985-995 (2019).
  27. Fiaschetti, V., et al. Magnetic resonance imaging and ultrasound evaluation after breast autologous fat grafting combined with platelet-rich plasma. Plastic and Reconstructive Surgery. 132 (4), 498-509 (2013).
  28. Gentile, P., Scioli, M. G., Orlandi, A., Cervelli, V. Breast Reconstruction with Enhanced Stromal Vascular Fraction Fat Grafting: What Is the Best Method. Plastic and Reconstructive Surgery. 3 (6), 406 (2015).
  29. Modarressi, A. Platlet Rich Plasma (PRP) Improves Fat Grafting Outcomes. World Journal of Plastic Surgery. 2 (1), 6-13 (2013).
  30. Muraglia, A., et al. Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support. Frontiers in Bioengineering and Biotechnology. 5, 66 (2017).
  31. Ferrao, A. V., Mason, R. M. The effect of heparin on cell proliferation and type-I collagen synthesis by adult human dermal fibroblasts. Biochimica et Biophysica Acta. 1180 (3), 225-230 (1993).
  32. Gonzalez-Delgado, P., Fernandez, J. Hypersensitivity reactions to heparins. Current Opinion in Allergy and Clinical Immunology. 16 (4), 315-322 (2016).
  33. Atashi, F. S. B., Nayernia, Z., Pittet-Cuénod, B., Modarressi, A. Platelet Rich Plasma Promotes Proliferation of Adipose Derived Mesenchymal Stem Cells via Activation of AKT and Smad2 Signaling Pathways. Stem Cell Research & Therapy. 5 (8), (2015).
check_url/fr/60816?article_type=t

Play Video

Citer Cet Article
Berndt, S., Turzi, A., Modarressi, A. Production of Autologous Platelet-Rich Plasma for Boosting In Vitro Human Fibroblast Expansion. J. Vis. Exp. (168), e60816, doi:10.3791/60816 (2021).

View Video