Summary

使用小毛针(sh)RNA在C2C12霉细胞细胞系中编码细胞外基质蛋白的基因稳定击倒

Published: February 12, 2020
doi:

Summary

我们提供一种协议,使用小发夹(sh)RNA在C2C12表细胞细胞细胞中稳稳地敲除编码细胞外基质(ECM)蛋白质的基因。以 ADAMTSL2 为例,我们描述了在 C2C12 霉细胞到霉细胞分化期间,mRNA、蛋白质和细胞水平的敲除效率验证方法。

Abstract

细胞外基质 (ECM) 蛋白质对骨骼肌发育和平衡至关重要。C2C12肌细胞中ECM蛋白基因编码的稳定敲除可用于研究这些蛋白质在骨骼肌发育中的作用。在这里,我们描述了一个协议,以耗尽ECM蛋白ADAMTSL2为例,使用小发夹(sh)RNA在C2C12细胞。在shRNA质粒转染后,使用紫霉素分批选择稳定细胞。我们进一步描述了这些细胞系的维持以及通过mRNA表达、蛋白质表达和C2C12分化进行的型皮分析。该方法的优点是,在细胞培养基中血清耗尽后,稳定C2C12敲除细胞的生成速度较快,C2C12细胞可可靠地分化成多核化月管。C2C12细胞的分化可以通过明亮的场显微镜和测量规范标记基因的表达水平,如肌D、肌激素或肌苷重链(MyHC)来监测,表明C2C12肌细胞分化到肌管的进展。与具有小干扰(si)RNA的基因的瞬时击倒不同,在C2C12分化期间或在核管成熟期间表达的基因可以通过生成稳定表达shRNA的C2C12细胞来更有效地靶向。该方法的局限性是敲除效率的可变性,这取决于使用基于CRISPR/Cas9的基因敲除策略可以克服的特定shRNA,以及应考虑的shRNA的潜在偏离目标效应。

Introduction

细胞外基质 (ECM) 蛋白质为所有组织提供结构支持,调解细胞-细胞通信,并确定细胞命运。因此,ECM的形成和动态重塑对于维持组织和器官平衡1,2至关重要。为ECM蛋白编码的几个基因中的病理变异导致肌肉骨骼疾病,其表型从肌肉萎缩症到伪造血3,4。例如,ADAMTSL2中的致病变异导致极其罕见的肌肉骨骼紊乱,表现为假肌肉生成,即骨骼肌质量明显增加5。加上小鼠和人类的基因表达数据,这表明ADAMTSL2在骨骼肌发育或平衡6,7中的作用。

我们在这里描述的协议是为了研究ADAMTSL2在细胞培养环境中调节骨骼肌发育和/或平衡的机制而开发的。我们稳稳地击倒了鼠C2C12霉菌细胞系中的ADAMTSL2。C2C12肌细胞及其分化成肌管是骨骼肌分化和骨骼肌生物工程8、9的一种描述良好且广泛使用的细胞培养模型。C2C12细胞在血清戒断后经历明显的分化步骤,导致培养3~10天后形成多核化月管。通过测量不同标记基因(如肌D、肌激素或肌苷重链(MyHC)的mRNA水平,可以可靠地监测这些分化步骤。在C2C12细胞中产生稳定基因敲除的一个优点是,与小干扰(si)RNA实现的瞬时敲除相比,在C2C12分化后期表达的基因可以更有效地定向,这种核化通常持续5~7天,并受转染效率的影响。此处所述协议的第二个优点是使用紫霉素选择快速生成批次 C2C12 敲除细胞。替代方案,如CRISPR/Cas9介导的基因敲除或从人类或靶基因缺陷小鼠分离原发性骨骼肌细胞前体,在技术上更具挑战性,或需要分别提供患者肌肉活检或靶基因缺陷小鼠。然而,与其他基于细胞培养的方法类似,使用C2C12细胞作为骨骼肌细胞分化模型存在局限性,如细胞培养的二维(2D)性质和缺乏对维持未分化的骨骼肌前体细胞至关重要的体内微环境10。

Protocol

1. 从大肠杆菌制备shRNA疟原体DNA 产生携带shRNA质粒的克隆细菌菌落 从商业来源获得携带靶性shRNA质粒的大肠杆菌的甘油库存和控制质粒(材料表)。注:使用了三种不同的shRNA质粒,针对的鼠阿达姆茨尔2 mRNA的不同区域。一个 shRNA 被选定针对Adamtsl2的 3’未翻译区域 (3’UTR), 以方便使用表达质粒编码重组全长 ADAMTSL2 或单个 ADAMTSL2 蛋白质域的…

Representative Results

由于有效消除非耐药细胞,即未转染的细胞(图1B),在转染后10~14天内即可选择抗紫霉素的C2C12。通常,超过80%的细胞从细胞培养皿分离,这些细胞在常规细胞维护期间被移除。抗普诺霉素的C2C12细胞表达控制(分散)shRNA保持主轴形状,在低细胞密度下,长长细胞形态,并能分化成月管。血清提取时的C2C12分化可以通过明场显微镜和肌管标记肌苷重链(MyHC)的?…

Discussion

我们在这里描述了C2C12异型细胞中ECM蛋白稳定敲除的协议,以及C2C12表细胞分化到近骨的表型分析。有几个因素决定实验的结果,需要仔细考虑。在增殖阶段维持C2C12细胞是使C2C12细胞保持在霉细胞前体状态的关键步骤。保持C2C12细胞持续分化成月管的能力取决于i)细胞的通过数,ii)在日常维护期间培养细胞的密度,以及iii)营养供应,需要频繁和定期补充细胞培养基11,12,13。

Divulgations

The authors have nothing to disclose.

Acknowledgements

D.H. 由美国国家卫生研究院(国家关节炎和肌肉骨骼和皮肤病研究所,NIAMS,赠款编号AR070748)和种子资助从Leni & Peter W. 五月骨科,伊坎医学院西奈山

Materials

Acetone Fisher Chemical 191784
Agar Fisher Bioreagents BP1423
Ampicillin Fisher Bioreagents BP1760-5
Automated cell counter Countesse II Invitrogen A27977
Bradford Reagent Thermo Scientific P4205987
C2C12 cells ATCC CRL-1772
Chamber slides Invitrogen C10283
Chloroform Fisher Chemical 183172
DMEM GIBCO 11965-092
DMSO Fisher Bioreagents BP231-100
DNase I (Amplification Grade) Invitrogen 18068015
Fetal bovine serum VWR 97068-085
GAPDH EMD Millipore MAB374
Glycine VWR Life Sciences 19C2656013
Goat-anti-mouse secondary antibody (IRDYE 800CW) Li-Cor C90130-02
Goat-anti mouse secondary antibody (Rhodamine-red) Jackson Immune Research 133389
HCl Fisher Chemical A144S
Incubator (Shaker) Denville Scientific Corporation 1704N205BC105
Mercaptoethanol Amresco, VWR Life Sciences 2707C122
Midiprep plasmid extraction kit Qiagen 12643
Myosin 4 (myosin heavy chain) Invitrogen 14-6503-82
Mounting medium Invitrogen 2086310
NaCl VWR Life Sciences 241
non-ionic surfactant/detergent VWR Life Sciences 18D1856500
Paraformaldehyde MP 199983
PBS Fisher Bioreagents BP399-4
PEI Polysciences 23966-1
Penicillin/streptomycin antibiotics GIBCO 15140-122
Petridishes Corning 353003
Polypropylene tubes Fisherbrand 149569C
Protease inhibitor cocktail tablets Roche 33576300
Puromycin Fisher Scientific BP2956100
PCR (Real Time) Applied Biosystems 4359284
Reaction tubes Eppendorf 22364111
Reverse Transcription Master Mix Applied Biosystems 4368814
RIPA buffer Thermo Scientific TK274910
sh control plasmid Sigma-Aldrich 07201820MN
sh 3086 plasmid Sigma-Aldrich TRCN0000092578
sh 972 plasmid Sigma-Aldrich TRCN0000092579
sh 1977 plasmid Sigma-Aldrich TRCN0000092582
Spectrophotometer (Nanodrop) Thermo Scientific NanoDrop One C
SYBR Green Reagent Master Mix Applied Biosystems 743566
Trichloroacetic acid Acros Organics 30145369
Trizol reagent Ambion 254707
Trypan blue GIBCO 15250-061
Tryptone Fisher Bioreagents BP1421
Trypsin EDTA 0.25% Gibco-Life Technology Corporation 2085459
Water (DEPC treated and nuclease free) Fisher Bioreagents 186163
Western blotting apparatus Biorad Mini Protean Tetra Cell
Yeast extract Fisher Bioreagents BP1422

References

  1. Tanzer, M. L. Current concepts of extracellular matrix. Journal of Orthopaedic Science: Official Journal of the Japanese Orthopaedic Association. 11 (3), 326-331 (2006).
  2. Hubmacher, D., Apte, S. S. The biology of the extracellular matrix: novel insights. Current Opinion in Rheumatology. 25 (1), 65-70 (2013).
  3. Sakai, L. Y., Keene, D. R. Fibrillin protein pleiotropy: Acromelic dysplasias. Matrix Biology. 80, 6-13 (2019).
  4. Iozzo, R. V., Gubbiotti, M. A. Extracellular matrix: The driving force of mammalian diseases. Matrix Biology. 71-72, 1-9 (2018).
  5. Le Goff, C., et al. ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation. Nature Genetics. 40 (9), 1119-1123 (2008).
  6. Dubail, J., Apte, S. S. Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics. Matrix Biology. 44-46, 24-37 (2015).
  7. Koo, B. H., et al. ADAMTS-like 2 (ADAMTSL2) is a secreted glycoprotein that is widely expressed during mouse embryogenesis and is regulated during skeletal myogenesis. Matrix Biology. 26 (6), 431-441 (2007).
  8. Khodabukus, A., Baar, K. The effect of serum origin on tissue engineered skeletal muscle function. Journal of Cellular Biochemistry. 115 (12), 2198-2207 (2014).
  9. Bajaj, P., et al. Patterning the differentiation of C2C12 skeletal myoblasts. Integrative Biology. 3 (9), 897-909 (2011).
  10. Mashinchian, O., Pisconti, A., Le Moal, E., Bentzinger, C. F. The Muscle Stem Cell Niche in Health and Disease. Current Topics in Developmental Biology. 126, 23-65 (2018).
  11. Hindi, L., McMillan, J. D., Afroze, D., Hindi, S. M., Kumar, A. Isolation, Culturing, and Differentiation of Primary Myoblasts from Skeletal Muscle of Adult Mice. Bio-protocol. 7 (9), 2248 (2017).
  12. Krauss, R. S., Joseph, G. A., Goel, A. J. Keep Your Friends Close: Cell-Cell Contact and Skeletal Myogenesis. Cold Spring Harbor Perspectives in Biology. 9 (2), 029298 (2017).
  13. Lawson, M. A., Purslow, P. P. Differentiation of myoblasts in serum-free media: effects of modified media are cell line-specific. Cells Tissues Organs. 167 (2-3), 130-137 (2000).
  14. Fujita, H., Endo, A., Shimizu, K., Nagamori, E. Evaluation of serum-free differentiation conditions for C2C12 myoblast cells assessed as to active tension generation capability. Biotechnology and Bioengineering. 107 (5), 894-901 (2010).
  15. Cheng, C. S., et al. Conditions that promote primary human skeletal myoblast culture and muscle differentiation in vitro. American Journal of Physiology-Cell Physiology. 306 (4), 385-395 (2014).
  16. Conejo, R., Valverde, A. M., Benito, M., Lorenzo, M. Insulin produces myogenesis in C2C12 myoblasts by induction of NF-kappaB and downregulation of AP-1 activities. Journal of Cellular Physiology. 186 (1), 82-94 (2001).
  17. Dodds, E., Dunckley, M. G., Naujoks, K., Michaelis, U., Dickson, G. Lipofection of cultured mouse muscle cells: a direct comparison of Lipofectamine and DOSPER. Gene Therapy. 5 (4), 542-551 (1998).
  18. Balcı, B., Dinçer, P. Efficient transfection of mouse-derived C2C12 myoblasts using a matrigel basement membrane matrix. Biotechnology Journal. 4 (7), 1042-1045 (2009).
  19. Xia, D., et al. Overexpression of chemokine-like factor 2 promotes the proliferation and survival of C2C12 skeletal muscle cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 1591 (1), 163-173 (2002).
  20. Tapia, O., Gerace, L. Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation. Methods in Molecular Biology. 1411, 177-194 (2016).
  21. Yamano, S., Dai, J., Moursi, A. M. Comparison of transfection efficiency of nonviral gene transfer reagents. Molecular Biotechnology. 46 (3), 287-300 (2010).
  22. Luo, J., et al. An efficient method for in vitro gene delivery via regulation of cellular endocytosis pathway. International Journal of Nanomedicine. 10, 1667-1678 (2015).
  23. Sandri, M., Bortoloso, E., Nori, A., Volpe, P. Electrotransfer in differentiated myotubes: a novel, efficient procedure for functional gene transfer. Experimental Cell Research. 286 (1), 87-95 (2003).
  24. Yi, C. E., Bekker, J. M., Miller, G., Hill, K. L., Crosbie, R. H. Specific and potent RNA interference in terminally differentiated myotubes. Journal of Biological Chemistry. 278 (2), 934-939 (2003).
  25. Antolik, C., De Deyne, P. G., Bloch, R. J. Biolistic transfection of cultured myotubes. Science’s STKE. 2003 (192), 11 (2003).
  26. Shintaku, J., et al. MyoD Regulates Skeletal Muscle Oxidative Metabolism Cooperatively with Alternative NF-kappaB. Cell Reports. 17 (2), 514-526 (2016).
check_url/fr/60824?article_type=t

Play Video

Citer Cet Article
Taye, N., Stanley, S., Hubmacher, D. Stable Knockdown of Genes Encoding Extracellular Matrix Proteins in the C2C12 Myoblast Cell Line Using Small-Hairpin (sh)RNA. J. Vis. Exp. (156), e60824, doi:10.3791/60824 (2020).

View Video