Summary

经过验证的LC-MS/MS面板,用于在小头发样本中量化11种耐药结核病药物

Published: May 19, 2020
doi:

Summary

目前分析患者是否遵守复杂耐药结核病(DR-TB)方案的方法可能不准确且资源密集。我们的方法分析头发,一个易于收集和储存的基质,浓度为11个DR-TB药物。使用LC-MS/MS,我们可以确定亚纳米格药物水平,可用于更好地了解药物依从性。

Abstract

耐药结核病 (DR-TB) 是一个日益严重的公共卫生威胁,评估治疗药物水平可能具有重要的临床益处。血浆药物水平是当前的黄金标准评估,但需要肾切除术和冷链,并捕获只是最近依从。我们的方法使用头发,一个易于收集并反映长期依从性的矩阵,测试11种抗结核药物。我们小组以前的工作表明,头发中的抗逆转录病毒药物水平与艾滋病毒结果有关。我们的DR-TB药物方法使用2毫克的头发(3厘米接近根),这是粉碎和提取甲醇。用一种LC-MS/MS方法分析样品,在16分钟内量化11种药物。11种药物的定量(LLOQs)下限范围从0.01纳克/毫克到1纳克/毫克不等。 药物存在通过比较两种质谱过渡的比率得到确认。样品使用药物与脱硝、15N-或13C标记药物等值的面积比进行量化。我们使用的校准曲线范围为 0.001-100 ng/mg。 该方法在直接观察治疗(DOT)上从DR-TB患者采集的头发样本的方便样本中的应用表明,在11种药物中的9种(异酰胺、苯丙胺、ethambutol、线胶、levofloacin、莫西氟辛、氟胺、贝达奎林、头头体)的线性动态范围内,头发中的药物水平。没有病人使用蛋白苯酰胺,并且测得的液酰胺水平接近其LLOQ(通过进一步的工作,而不是检查依西酰胺的代谢物是否适合监测暴露)。总之,我们描述了头发DR-TB药物的多机解毒板的开发,作为耐药结核病治疗期间治疗药物监测的技术。

Introduction

在21世纪,耐药结核病(DR-TB)是本已薄弱的国家结核病控制计划中不断演变的灾难,仅在过去5年中,确诊病例就翻了一番,占全球抗微生物药物耐药性死亡总数的近三分之,与治疗对药物敏感的结核病相比,成功治疗DR-TB通常要求更长、毒性更大的二线治疗方案。此外,DR-TB患者在依从性方面往往存在重大挑战,导致最初出现耐药性

与HIV感染不同,病毒载量可用于监测治疗,结核病治疗反应的代理终点在个别4级延迟且不可靠。监测患者依从性是亚治疗抗结核药物浓度和治疗失败的重要预测器,也是一项挑战。自我报告的依从性有召回偏见和取悦供应商的愿望55,6。6丸数和药物事件监测系统(MEMS)可以更客观7,但不测量实际药物消耗88,9,10。9,10生物基质中的药物水平可以提供依从性和药代动力学数据。因此,血浆药物水平通常用于治疗药物监测11,12。11,然而,在药物依从性监测方面,血浆水平代表短期接触,在确定适当的依从性参考范围时,受患者体内和患者间变异性的限制。”白衣”效应,在临床或研究访问之前,依从性改善,进一步复杂化血浆水平的能力,提供准确的药物依从模式13。

头发是一种替代生物基质,可以测量长期药物暴露1414,15。15许多药物和内源性代谢物结合到头发蛋白基质从系统循环,因为头发生长。随着头发生长过程中这种动态过程的继续,沉积在头发基质中的药物量取决于药物在循环中的连续存在,使头发成为药物摄入量的极佳时间读出。头发作为生物基质具有另一个优点,即易于收集,无需与血液相比,冷链进行储存和装运。此外,头发是非生物危害的,这提供了额外的可行性优势,在外地。

头发药物水平早已用于法医申请16。在过去十年中,头发抗逆转录病毒(ARV)水平在评估药物在艾滋病毒治疗和预防方面是否得到效用,我们小组对此作出了贡献。头发中的抗逆转录病毒药物水平已被证明是HIV感染治疗结果的最独立预测变量17、18、19、20、21。17,18,19,20,21为了确定DR-TB患者的头发水平在预测治疗结果方面是否具有相同的效用,我们使用LC-MS/MS来开发和验证一种分析小头发样本中11种DR-TB药物的方法。作为对测定性能的初步评估,我们在南非西开普22号对接受直接观察治疗的DR-TB患者的方便样本中测量了DR-TB药物水平。

Protocol

所有患者在收集头发样本前都提供书面知情同意。我们获得了开普敦大学和加州大学旧金山分校的机构审查委员会的批准。 1. 头发取样 获得书面知情同意。 使用干净的剪刀从尽可能靠近头皮的区域切割大约20-30个头皮发丝。 在头发的远端放置胶带,以指示方向性。将头发样本折叠成铝箔正方形,并在室温下存放。标记头发的远端,以避免因对近端进行…

Representative Results

图1显示了所有11种DR-TB药物的确诊水平的色谱图图图。使用不同的仪器和列时,每个护身奶的保留时间可能会更改,因此应单独确定确切的保留时间。 图2显示了一种特定药物(isoniazid,INH)在一种校准器(空白头发样本与DR-TB药物参考标准尖刺)的提取的Ion色谱仪(EIC)。定量器和限定符过渡用于定性地确认药物的存在,因为定量…

Discussion

我们在这里报告我们开发和验证的方法的协议,用于量化11种抗结核病药物,用于治疗使用LC-MS/MS的小头发样本中的DR-TB。以前没有其他方法来量化头发中的这11种药物,但已经开发、验证和发布。我们的方法可以量化亚纳米克的药物水平,只有20-30发丝长约3厘米(约2毫克),并已经过验证22。头发分析的低重量意味着参与研究的患者可以谨慎参与,并有可能返回重复测试,而不?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者要感谢开普敦大学肺研究所的基尔坦·迪达教授、阿里·伊斯梅尔博士和玛丽特杰·普雷托利斯教授为这项研究收集头发样本提供便利。作者还感谢本研究参与者的贡献。

Materials

2 mL injection vials Agilent Technologies 5182-0716
250 uL injection vial inserts Agilent Technologies 5181-8872
Bead ruptor 24 OMNI International 19001
Bead ruptor tubes (2 mL bead kit, 2.8mm ceramic, 2 mL microtubes) OMNI International 19628
Bedaquiline Toronto Research Chemicals B119550
Bedaquiline-d6 Toronto Research Chemicals B119552
Clofazimine Toronto Research Chemicals C324300
Clofazimine-d7 Toronto Research Chemicals C324302
Disposable lime glass culture tubes VWR 60825-425
Ethambutol Toronto Research Chemicals E889800
Ethambutol-d4 Toronto Research Chemicals E889802
Ethionamide Toronto Research Chemicals E890420
Ethionamide-d5 ClearSynth CS-O-06597
Formic acid Sigma-Aldrich F0507-100mL
Glass bottles Corning 1395-1L
Hot Shaker Bellco Glass Inc 7746-32110
HPLC Agilent Technologies Infinity 1260
HPLC grade acetonitrile Honeywell 015-4
HPLC grade methanol Honeywell 230-1L
HPLC grade water Aqua Solutions Inc W1089-4L
Isoniazid Toronto Research Chemicals I821450
Isoniazid-d4 Toronto Research Chemicals I821452
LC column, Synergi 2.5 um Polar RP 100 A 100 x 2 mm Phenomenex 00D-4371-B0
LC guard cartridge Phenomenex AJ0-8788
LC guard cartridge holder Phenomenex AJ0-9000
LC-MS/MS quantitation software Sciex Multiquant 2.1
Levofloxacin Sigma-Aldrich 1362103-200MG
Levofloxacin-d8 Toronto Research Chemicals L360002
Linezolid Toronto Research Chemicals L466500
Linezolid-d3 Toronto Research Chemicals L466502
Micro centrifuge tubes E&K Scientific 695554
Moxifloxacin Toronto Research Chemicals M745000
Moxifloxacin-13C, d3 Toronto Research Chemicals M745003
MS/MS Sciex Triple Quad 5500
OPC 14714 Toronto Research Chemicals O667600
Pretomanid (PA-824) Toronto Research Chemicals P122500
Prothionamide Toronto Research Chemicals P839100
Prothionamide-d5 Toronto Research Chemicals P839102
Pyrazinamide Toronto Research Chemicals P840600
Pyrazinamide-15N, d3 Toronto Research Chemicals P840602
Septum caps for injection vials Agilent Technologies 5185-5862
Turbovap LV evaporator Biotage 103198/11

References

  1. Kurbatova, E. V., et al. Predictors of poor outcomes among patients treated for multidrug-resistant tuberculosis at DOTS-plus projects. Tuberculosis (Edinb). 92, 397-403 (2012).
  2. Dheda, K., et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respiratory Medicine. , (2017).
  3. Berg, K. M., Arnsten, J. H. Practical and conceptual challenges in measuring antiretroviral adherence. Journal of Acquired Immunodeficiency Syndromes (JAIDS). 43, 79-87 (2006).
  4. Kagee, A., Nel, A. Assessing the association between self-report items for HIV pill adherence and biological measures. AIDS Care. 24 (11), 1448-1452 (2012).
  5. Haberer, J. E., et al. Adherence to antiretroviral prophylaxis for HIV prevention: a substudy cohort within a clinical trial of serodiscordant couples in East Africa. PLoS Medicine. 10 (9), 1001511 (2013).
  6. Pullar, T., Kumar, S., Tindall, H., Feely, M. Time to stop counting the tablets. Clinical Pharmacology & Therapeutics. 46 (2), 163-168 (1989).
  7. Liu, H., et al. A comparison study of multiple measures of adherence to HIV protease inhibitors. Annals of Internal Medicine. 134 (10), 968-977 (2001).
  8. Wendel, C., et al. Barriers to use of electronic adherence monitoring in an HIV clinic. Annals of Pharmacotherapy. 35, 1010-1101 (2001).
  9. Ruiz, J., et al. Impact of voriconazole plasma concentrations on treatment response in critically ill patients. Clinical Pharmacology & Therapeutic. , (2019).
  10. Saktiawati, A. M., et al. Optimal sampling strategies for therapeutic drug monitoring of first-line tuberculosis drugs in patients with tuberculosis. Clinical Phamacokinetics. , (2019).
  11. Podsadecki, T. J., Vrijens, B. C., Tousset, E. P., Rode, R. A., Hanna, G. J. “White coat compliance” limits the reliability of therapeutic drug monitoring in HIV-1-infected patients. HIV Clinical Trials. 9 (4), 238-246 (2008).
  12. Cuypers, E., Flanagan, R. J. The interpretation of hair analysis for drugs and drug metabolites. Clinical Toxicology. 56 (2), 90-100 (2018).
  13. Knitz, P., Villain, M., Crimele, V. Hair analysis for drug detection. Therapeutic Drug Monitoring. 28 (3), 442-446 (2006).
  14. Barroso, M., Gallardo, E., Vleira, D. N., Lopez-Rivadulla, M., Queiroz, J. A. Hair: a complementary source of bioanalytical information in forensic toxicology. Bioanalysis. 3 (1), 67-79 (2011).
  15. Gandhi, M., et al. Atazanavir concentration in hair is the strongest predictor of outcomes on antiretroviral therapy. Clinical Infectious Diseases. 52 (10), 1267-1275 (2011).
  16. Koss, C. A., et al. Hair concentrations of antiretrovirals predict viral suppression in HIV-infected pregnant and breastfeeding Ugandan women. AIDS. 29 (7), 825-830 (2015).
  17. Pintye, J., et al. Brief Report: Lopinavir Hair Concentrations Are the Strongest Predictor of Viremia in HIV-Infected Asian Children and Adolescents on Second-Line Antiretroviral Therapy. Journal of Acquired Immune Deficiency Syndromes (JAIDS). 76 (4), 367-371 (2017).
  18. Baxi, S. M., et al. Nevirapine Concentration in Hair Samples Is a Strong Predictor of Virologic Suppression in a Prospective Cohort of HIV-Infected Patients. PLoS One. 10 (6), 0129100 (2015).
  19. Gandhi, M., et al. Antiretroviral concentrations in hair strongly predict virologic response in a large HIV treatment-naive clinical trial. Clinical Infectious Diseases. 5, 1044-1047 (2019).
  20. Gerona, R., et al. Simultaneous analysis of 11 medications for drug resistant TB in small hair samples to quantify adherence and exposure using a validate LC-MS/MS panel. Journal of Chromatography B. 1125, 121729 (2019).
  21. Metcalfe, J., et al. Association of anti-tuberculosis drug concentration in hair and treatment outcomes in MDR- and XDR-TB. European Respriatory Journal Open Research. 5 (2), (2019).
  22. Metcalfe, J. Z., O’Donnell, M. R., Bangsberg, D. R. Moving Beyond Directly Observed Therapy for Tuberculosis. PLoS Medicine. 12 (9), 1001877 (2015).
check_url/fr/60861?article_type=t

Play Video

Citer Cet Article
Reckers, A., Wen, A., Aguilar, D., Bacchetti, P., Gandhi, M., Metcalfe, J., Gerona, R. Validated LC-MS/MS Panel for Quantifying 11 Drug-Resistant TB Medications in Small Hair Samples. J. Vis. Exp. (159), e60861, doi:10.3791/60861 (2020).

View Video