Summary

非人类灵长类动物神经外科规划基于MRI的工具箱

Published: July 17, 2020
doi:

Summary

下面概述的方法旨在提供一个全面的方案,准备非人类灵长类动物(NHP)神经外科使用三维(3D)打印方法和MRI数据提取的新组合。

Abstract

在这篇论文中,我们概述了一种手术制备方法,该方法仅使用从磁共振成像 (MRI) 中提取的数据对 NHP 中的各种神经外科医生进行实际规划。该协议允许生成3D打印解剖上准确的大脑和头骨的物理模型,以及大脑建模一些机械特性的阿加罗斯凝胶模型。这些模型可以从MRI中提取,使用大脑模型的大脑提取软件,以及头骨模型的自定义代码。制备方案利用最先进的3D打印技术,为凝胶大脑模型制作连接大脑、头骨和模具。头骨和大脑模型可用于可视化颅内脑组织,并在自定义代码中添加颅骨切除术,从而更好地为直接涉及大脑的手术做准备。这些方法的应用是专为神经刺激和记录以及注射手术而设计的,但该系统的多功能性允许将来将协议、提取技术和模型扩展至更广泛的手术范围。

Introduction

灵长类动物研究是医学研究从动物模型到人体试验1、2的关键一步。这在神经科学和神经工程研究中尤为如此,因为啮齿动物的大脑与非人类灵长类动物的大脑(NHP)1、2、3之间存在巨大的生理和解剖学差异。随着化学遗传学、光遗传学和钙成像等新兴基因技术需要神经元进行基因改造,研究NHP神经功能的神经工程研究作为理解大脑功能2、4、5、6、7、8、9、10、11、12、13、14、15、16的临床前模型得到了特别关注在大多数NHP神经科学实验中,需要神经外科措施来植入各种设备,如头部柱、刺激和记录室、电极阵列和光学窗口4、5、6、7、10、11、13、14、15、17、18。

目前的NHP实验室使用各种方法,通常包括无效的做法,包括对动物进行窒息,以适合头部柱的腿,并近似颅骨切除地点周围的头骨曲率。其他实验室在手术中将头部柱贴到头骨上,或采用更先进的方法获得必要的植入测量,如分析NHP脑图集和磁共振(MR)扫描,试图估计头骨曲率2,10,11,16。NHPs中的神经外科医生也涉及液体注射,实验室通常无法仅依靠立体测量和与 MR 扫描进行比较才能将大脑 2、4、5、13、14内的预计注射位置可视化。这些方法有一定程度的不可避免的不确定性,无法测试植入物的所有复杂组件的物理兼容性。

因此,需要一种精确的非侵入性方法来进行NHPS的神经外科规划。在这里,我们提出了一个协议和方法,准备植入和注射手术在这些动物。整个过程源于MRI扫描,从数据中提取大脑和头骨,创建三维(3D)模型,然后可以3D打印。头骨和大脑模型可以结合,以准备颅骨切除术以及头部柱与提高的准确性水平。大脑模型还可用于创建用于铸造大脑解剖上准确的凝胶模型的模具。凝胶大脑单独和结合提取的头骨可用于准备各种注射手术。下面我们将介绍基于 MRI 的神经外科准备工具箱所需的每个步骤。

Protocol

所有动物程序都得到华盛顿大学动物护理和使用研究所委员会的批准。使用了两只雄性恒河猴(猴子H:14.9公斤和7岁,猴子L:14.8公斤和6岁)。 1. 图像采集 将猴子运送到3T MRI扫描仪,将动物放在一个与MRI兼容的立体轴框(材料表)。 记录标准T1(翻转角度 = 8°,重复时间/回声时间 = 7.5/3.69 s,矩阵大小 = 432 x 432 x 80,采集持续时间 = 103.7 s,多可可?…

Representative Results

过去2、5、10、16年,MRIS作为术前颅骨切除术规划措施的操纵和分析已成功使用。然而,由于增加了大脑、头骨和颅骨的3D建模,这个过程得到了极大的加强。我们能够成功地创建一个分析上准确的大脑物理模型,反映我们研究的兴趣领域(图1)。同样,我们能够从 MR 图像中提?…

Discussion

本文介绍了一个工具箱,用于准备神经保险在NHPs使用物理和CAD模型的头骨和大脑解剖从 MR扫描提取。

虽然提取和3D打印的头骨和大脑模型是专门为准备颅骨切除术和头部后植入而设计的,但这种方法适用于其他几个应用。如前所述,头骨的物理模型允许在手术前预弯曲头部后,从而与头骨形成良好的配合。此外,从MRI提取的头骨可用于生成一个3D设计的后柱,对头骨解剖具有…

Divulgations

The authors have nothing to disclose.

Acknowledgements

该项目得到了国家卫生研究院尤尼斯·肯尼迪·希弗国家儿童健康与人类发展研究所(K12HD073945奖)、华盛顿国家灵长类动物研究中心(WaNPCR、P51 OD010425)、神经技术中心(CNT、授予EEC-1028725下的国家科学基金会工程研究中心)和华盛顿大学版税研究基金的支持。为该项目向麦克尼克和马丁内斯-康德实验室提供的资金来自大脑倡议 NSF-NCS 奖 1734887,以及 NSF 奖 1523614 和 1829474,以及 SUNY 帝国创新者奖学金。该奖学金授予每位教授。我们感谢卡拉姆·哈提布在阿加罗斯准备方面的帮助,感谢托尼·朱恩的技术支持。

Materials

3D Printing Software (GrabCAD Print) Stratasys Version 1.36 Used for High quality 3D printing
3D Printing Software (Simplify 3D) Simplify3D Version 4.1 Used for PLA 3D printing
Agarose Benchmark Scientific A1700 Used for making gel brains
Black Nail Polish L.A. Colors CNP637 Used for gel molding
Cannula (ID 320 um, OD 432 um) Polymicro Technologies 1068150627 Used to inject dye into gel brain
Cannula (ID 450 um, OD 666 um) Polymicro Technologies 1068150625 Used to inject dye into gel brain
Catheter Connector B Braun PCC2000 Perifix for 20-24 Gage epidural catheters; Units per Cs 50
Dremel 3D Digilab 3D45 printer Dremel F0133D45AA Used for prototyping in PLA
ECOWORKS Stratasys 300-00104 Used to dissolve QSR support structures
Erlymeyer flask Pyrex 4980 Used for gel molding
Ethyl cyanoacrylate The Original Super Glue Corp. 15187 Used to make combined cannula
Graduated cylinder 3023 Used for gel molding
HATCHBOX PLA 3D Printer Filament HATCHBOX 3DPLA-1KG1.75-RED/3DPLA-1KG1.75-BLACK 1kg Spool, 1.75mm, Red/Black
Locust Bean Gum Modernist Pantry 1018 Gumming agent for gel brain mixtures
MATLAB MathWorks R2019b Used for skull extraction
McCormick Yellow Food Color McCormick Used for dye injection
Microwave Panasonic NN-SD975S Used for agarose curing
MR Imaging Software (3D Slicer) 3D Slicer Version 4.10.2 Used for 3D model generation
MR Imaging Software (Mango with BET plugin) Reasearch Imaging Institute Version 4.1 Used for brain extraction
Philips Acheiva MRI System Philips 4522 991 19391 Used to image non-human primates
Phosphate Buffered Solution Gibco 70011-044 10X diluted with DI water to 1X
Pump WPI UMP3T-1 Used for dye injection
Pump driver WPI UMP3T-1 Used for dye injection
Refrigerator General Electric Used to preserve agarose gel
Scientific Spatula VWR 82027-494 Used to extract gel molds
SolidWorks Dassault Systemes 2019
Stratasys ABS-M30 filament Stratasys 333-60304 Used for high quality 3D printing
Stratasys F170 3D printer Stratasys 123-10000 Used for high quality 3D printing
Stratasys QSR support Stratasys 333-63500 Used to create supports with ABS model
Syringe SGE SGE250TLL Used for dye injection

References

  1. Phillips, K. A., et al. Why primate models matter. American Journal of Primatology. 76 (9), 801-827 (2014).
  2. Macknik, S. L., et al. Advanced Circuit and Cellular Imaging Methods in Nonhuman Primates. Journal of Neuroscience. 39 (42), 8267-8274 (2019).
  3. Seok, J., et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences of the United States of America. 110 (9), 3507-3512 (2013).
  4. Ju, N., Jiang, R., Macknik, S. L., Martinez-Conde, S., Tang, S. Long-term all-optical interrogation of cortical neurons in awake-behaving nonhuman primates. PLoS Biol. 16 (8), 2005839 (2018).
  5. Yazdan-Shahmorad, A., et al. Widespread optogenetic expression in macaque cortex obtained with MR-guided, convection enhanced delivery (CED) of AAV vector to the thalamus. Journal of Neuroscience Methods. 293, 347-358 (2018).
  6. Yazdan-Shahmorad, A., Silversmith, D. B., Kharazia, V., Sabes, P. N. Targeted cortical reorganization using optogenetics in nonhuman primates. Elife. 7, (2018).
  7. Ledochowitsch, P., et al. Strategies for optical control and simultaneous electrical readout of extended cortical circuits. Journal of Neuroscience Methods. 256, 220-231 (2015).
  8. Yao, Z., Yazdan-Shahmorad, A. A Quantitative Model for Estimating the Scale of Photochemically Induced Ischemic Stroke. Conference proceedings – IEEE Engineering in Medicine and Biology Society. 2018, 2744-2747 (2018).
  9. Yazdan-Shahmorad, A., Silversmith, D. B., Sabes, P. N. Novel techniques for large-scale manipulations of cortical networks in nonhuman primates. Conference proceedings – IEEE Engineering in Medicine and Biology Society. 2018, 5479-5482 (2018).
  10. Yazdan-Shahmorad, A., et al. A Large-Scale Interface for Optogenetic Stimulation and Recording in Nonhuman Primates. Neuron. 89 (5), 927-939 (2016).
  11. Yazdan-Shahmorad, A., et al. Demonstration of a setup for chronic optogenetic stimulation and recording across cortical areas in nonhuman primates. SPIE BiOS. , (2015).
  12. Han, X. Optogenetics in the nonhuman primate. Progress in Brain Research. 196, 215-233 (2012).
  13. Acker, L., Pino, E. N., Boyden, E. S., Desimone, R. FEF inactivation with improved optogenetic methods. Proceedings of the National Academy of Sciences of the United States of America. 113 (46), 7297-7306 (2016).
  14. May, T., et al. Detection of optogenetic stimulation in somatosensory cortex by nonhuman primates–towards artificial tactile sensation. PLoS One. 9 (12), 114529 (2014).
  15. Griggs, D. J., K, K., Philips, S., Chan, J. W., Ojemann, W. K. S., Yazdan-Shahmorad, A. Optimized large-scale optogenetic interface for nonhuman primates. SPIE BiOS. , (2019).
  16. Khateeb, K., Griggs, D. J., Sabes, P. N., Yazdan-Shahmorad, A. Convection Enhanced Delivery of Optogenetic Adeno-associated Viral Vector to the Cortex of Rhesus Macaque Under Guidance of Online MRI Images. Journal of Visualized Experiments. (147), (2019).
  17. Lucas, T. H., Fetz, E. E. Myo-cortical crossed feedback reorganizes primate motor cortex output. Journal of Neuroscience. 33 (12), 5261-5274 (2013).
  18. Jackson, A., Mavoori, J., Fetz, E. E. Long-term motor cortex plasticity induced by an electronic neural implant. Nature. 444 (7115), 56-60 (2006).
  19. Paxinos, G., Huang, X. F., Petrides, M., Toga, A. W. . The Rhesus Monkey Brain in Stereotaxic Coordinates. 2nd Edition. , (2008).
  20. Krauze, M. T., et al. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. Journal of Neurosurgery. 103 (5), 923-929 (2005).
  21. Chen, Z. J., et al. A realistic brain tissue phantom for intraparenchymal infusion studies. Journal of Neurosurgery. 101 (2), 314-322 (2004).
  22. Cheng, H., et al. Prolonged operative duration is associated with complications: a systematic review and meta-analysis. Journal of Surgical Research. 229, 134-144 (2018).
  23. Michikawa, T., et al. Automatic extraction of endocranial surfaces from CT images of crania. PLoS One. 12 (4), 0168516 (2017).
  24. Soliman, A. S., et al. A realistic phantom for validating MRI-based synthetic CT images of the human skull. Medical Physics. 44 (9), 4687-4694 (2017).
  25. Blonde, J. D., et al. Customizable cap implants for neurophysiological experimentation. Journal of Neuroscience Methods. 304, 103-117 (2018).
  26. Overton, J. A., et al. Improved methods for acrylic-free implants in nonhuman primates for neuroscience research. Journal of Neurophysiology. 118 (6), 3252-3270 (2017).
  27. Lohmeier, J., Kaneko, T., Hamm, B., Makowski, M. R., Okano, H. atlasBREX: Automated template-derived brain extraction in animal MRI. Scientific Reports. 9 (1), 12219 (2019).
  28. Ortiz-Rios, M., et al. Improved methods for MRI-compatible implants in nonhuman primates. Journal of Neuroscience Methods. 308, 377-389 (2018).
  29. Nishimura, Y., Perlmutter, S. I., Eaton, R. W., Fetz, E. E. Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron. 80 (5), 1301-1309 (2013).
  30. Seeman, S. C., Mogen, B. J., Fetz, E. E., Perlmutter, S. I. Paired Stimulation for Spike-Timing-Dependent Plasticity in Primate Sensorimotor Cortex. Journal of Neuroscience. 37 (7), 1935-1949 (2017).
  31. Sedaghat-Nejad, E., et al. Behavioral training of marmosets and electrophysiological recording from the cerebellum. Journal of Neurophysiology. 122 (4), 1502-1517 (2019).
  32. Schweizer-Gorgas, D., et al. Magnetic resonance imaging features of canine gliomatosis cerebri. Veterinary Radiology & Ultrasound. 59 (2), 180-187 (2018).
  33. Galvan, A., et al. Nonhuman Primate Optogenetics: Recent Advances and Future Directions. Journal of Neuroscience. 37 (45), 10894-10903 (2017).
  34. Galvan, A., Caiola, M. J., Albaugh, D. L. Advances in optogenetic and chemogenetic methods to study brain circuits in nonhuman primates. Journal of Neural Transmission. 125 (3), 547-563 (2018).
check_url/fr/61098?article_type=t

Play Video

Citer Cet Article
Ojemann, W. K., Griggs, D. J., Ip, Z., Caballero, O., Jahanian, H., Martinez-Conde, S., Macknik, S., Yazdan-Shahmorad, A. A MRI-Based Toolbox for Neurosurgical Planning in Nonhuman Primates. J. Vis. Exp. (161), e61098, doi:10.3791/61098 (2020).

View Video