Summary

用于神经元细胞贩运研究的管子中纯化和直接单生物素重组BDNF的改进协议

Published: July 11, 2020
doi:

Summary

含有 Avi 序列 (BDNFAvi) 的重组 BDNF 以经济高效的方式在 HEK293 细胞中生产,并通过亲和色谱进行纯化。然后,BDNFavi 与管中的酶 BirA 直接单生物素化。与市售的BDNF相比,BDNFavi和单生物素化BDNFavi保留了其生物活性。

Abstract

含有 Avi 序列 (BDNFAvi) 的重组 BDNF 在 HEK293 细胞中生产,然后通过亲和力色谱进行经济高效地纯化。一种可重复的协议被开发成直接单生物素BDNFAvi与酶BirA在管中。在这个反应中,单生物素化BDNFAvi保持其生物活性。

神经营养素是靶源生长因子,在神经元发育和维持中起着一定的作用。它们需要沿着内分泌通路的快速传输机制,以便在不同的神经元隔间之间进行远距离信号。开发分子工具,研究神经营养素的贩运,使这些蛋白质在细胞使用体内记录精确跟踪。在该协议中,我们为单生物基化BDNF的生产开发了一个优化且经济高效的程序。含有生物素可 avi 序列 (BDNFAvi) 的重组 BDNF 变种在微克范围内的 HEK293 细胞中产生,然后使用亲和力色谱在易于分量的程序中纯化。然后,纯化的BDNF可以通过与管中的BirA酶直接外反应来均匀地进行单生物素化。单生物基化BDNF(mbtBDNF)的生物活性可以与与不同荧光团结合的链球菌结合。BDNFAvi和mbtBDNF分别通过利用西方印迹检测下游磷酸化靶点和活化转录因子CREB来保持其生物活性。使用链球菌素量子点,我们能够可视化 mbtBDNF 内化伴随激活 CREB,该激活与磷-CREB特异性抗体一起检测。此外,与链球菌素量子点结合的mbtBDNF适用于微流体室中生长的皮质神经元的逆行性传输分析。因此,在管生产mbtBDNF是一个可靠的工具,研究生理信号内位动力学和神经元的贩运。

Introduction

神经元是神经系统的功能单位,具有复杂和专门的形态,允许突触通信,因此,产生协调和复杂的行为,以回应不同的刺激。神经元投影,如树突和轴突是参与神经元交流的关键结构特征,神经营养素是决定其形态和功能1的关键参与者。神经营养素是一个分泌生长因子的家族,包括NGF、NT-3、NT-4和脑源神经营养因子(BDNF)2。在中枢神经系统(CNS),BDNF参与不同的生物过程,包括神经传学,树突状,树突脊柱的成熟,长期强权,等等3,4。3,因此,BDNF在调节神经元功能方面起着至关重要的作用。

不同的细胞过程调节BDNF动力学和功能。在神经元表面,BDNF结合肌蛋白酶受体激酶B(TrkB)和/或p75神经营养素受体(p75)。BDNF-TrkB和BDNF-p75复合物被内分泌和排序在不同的内分泌细胞器5,6,7,8。,6,7,8BDNF/TrkB复合物的细胞内贩运需要在不同的神经元,电路9、10、11,中发出正确的BDNF信号10因此,深入了解BDNF贩运动态及其在病理生理过程中的变化对于了解BDNF在健康和疾病中的信号至关重要。开发新的和特定的分子工具来监测这一过程将有助于推动这一领域向前发展,并更好地掌握所涉及的监管机制。

有几个工具可用于研究BDNF贩运神经元。常用的方法涉及转染重组BDNF与荧光分子标记,如绿色荧光蛋白(GFP)或单体荧光红移变种的GFP mCherry12,13。,13然而,BDNF过度表达的一个主要缺点是,它消除了提供这种神经营养素的已知浓度的可能性。此外,它可能会导致细胞毒性,掩盖了结果14的解释。另一种策略是表位标记的TrkB的转染,如旗-TrkB。这种方法允许研究TrkB内化动力学15,但它也涉及转染,这可能会导致TrkB功能和细胞毒性的改变。为了克服这些方法障碍,16,17,开发了含有Avi序列(BDNFAvi)的NGF和BDNF的重组变种,这种变异可以由生物素-利加酶BirA生物素。生物基化重组BDNF可与不同的链球菌结合工具耦合,这些工具包括荧光团、珠子、顺磁纳米粒子等,用于检测。在活细胞成像方面,量子点(QD)已成为常用的荧光团,因为它们具有单粒子跟踪的可取特性,如与小分子荧光团18相比,亮度增加,光漂白的抵抗力增强。

使用BDNFAvi的单生物基化BDNF(mbtBDNF)的产生是通过对驱动BDNFAvi和BirA表达的质粒进行共生共进,然后通过亲和力色谱纯化重组蛋白,每20mL的 HEK293条件培养基17产生1-2μg的BDNF。在这里,我们建议修改该协议,允许BDNFAvi纯化从500 mL的 HEK293 条件介质,寻求最大限度地提高蛋白质回收在色谱柱为基础的协议,以方便操作。用过的转染剂聚乙烯胺 (PEI) 可确保在不牺牲转染产量的情况下采用经济高效的方法。单生物素化步骤已适应体外反应,以避免与共创相关的并发症,并确保BDNF的均匀标记。mbtBDNF的生物活性通过西方的印迹和荧光显微镜实验得到证明,包括pCREB的活化和活细胞成像,以研究BDNF在微流体室中的逆行性。使用该协议允许优化,高产生产同质单生物基化和生物活性BDNF。

Protocol

所有实验都是按照智利国家科学和技术研究委员会(智利国家科学技术研究委员会)核准的准则进行的。本研究中使用的议定书得到智利大学生物安全和生物伦理及动物福利委员会的批准。涉及脊椎动物的实验得到智利大学生物伦理和动物福利委员会的批准。 注:以下协议旨在从 HEK293 细胞中产生的 500 mL 条件介质的总体积中纯化 BDNFAvi。为净化BDNFAvi而生产并加工的有条件介?…

Representative Results

使用基于色谱柱的协议可以处理大量 HEK293 条件介质。在图1中,显示了从500mL的调节介质中纯化BDNFAvi的结果。从Ni-NTA agarose珠连续洗脱BDNFAvi产生BDNFAvi浓度下降(图1A)。经过四次连续洗脱(每次持续15分钟),珠子捕获的大多数BDNF被恢复。Eluates 的浓度范围为 6 至 28 ng/μL,总产量约为 BDNFAvi 的 60 μg(表 1)。然后,由BirA-GST调解的体外反应…

Discussion

本文根据宋和合作者17的工作,描述了在基于亲和力色谱的工艺中生产和纯化mbtBDNF的优化方法。优化包括使用具有成本效益的转染试剂 (PEI),同时保持更昂贵的转染方法(如脂氨基胺)的效率。这种优化可显著降低协议成本,实现可扩展性,同时保持高成本效益。该协议还包括易用性考虑,包括冻结有条件介质长达2个月。这些优化使程序适应每个实验室的需求,提高成本效?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者感谢方德西特 (1171137) (FCB), 巴塞尔科技卓越中心 (AFB 170005) (FCB), 千禧年核心 (P07/011-F(FCB)、威康信托高级调查员奖(107116/Z/15/Z)和英国痴呆症研究所基金会奖(GS)。这项工作得到了UC微镜协会(UMA UC)的支持。

Materials

2 way stopcock BioRad 7328102 Chromatography apparatus component
2-mercaptoethanol Sigma M6250 BDNF elution buffer
Acrylamide/Bisacrylamide BioRad 1610154 SDS-PAGE gel preparation
Amicon Ultra-15 10K Millipore UFC901024 BDNF concentration
Ammonium Persulfate Sigma A9164 SDS-PAGE gel preparation
anti B-III-Tubulin antibody Sigma T8578 Western blot assays for BDNF biological activity detection
anti BDNF antibody Alomone AGP-021 Western blot assays for BDNF quantification
anti BDNF antibody Alomone ANT-010 Western blot assays for BDNF quantification
Anti ERK antibody Cell Signaling 9102 Western blot assays for BDNF biological activity detection
anti pCREB antibody (S133) Cell Signaling 9198 Western blot assays for BDNF biological activity detection
anti pERK antibody (T202, Y204) Cell Signaling 4370 Western blot assays for BDNF biological activity detection
anti pTrkB antibody (Y515) Abcam ab109684 Western blot assays for BDNF biological activity detection
Antibiotic/Antimycotic Gibco 15240-062 HEK293 maintenance
ATP Sigma A26209 BDNF monobiotinylation buffer
B-27 Supplement Gibco 17504-044 Neuron maintenance
Bicine Sigma B3876 BDNF monobiotinylation buffer
BirA-GST BPS Bioscience 70031 Enzyme for BDNF AviTag monobiotinylation
Bovine Fetal Serum HyClone HC.SH30396.02 HEK293 maintenance
Bovine Serum Albumin Jackson ImmunoResearch 001-000-162 BDNF buffer modification component, blocking buffer for western blot and immunofluorescence
D-Biotin Sigma B4639 BDNF monobiotinylation buffer
Dithiothreitol Invitrogen 15508-013
DMEM High Glucose Medium Gibco 11965-092 Neuron seeding
DMEM Medium Gibco 11995-081 HEK293 maintenance
Econo Column Funnel BioRad 7310003 Chromatography apparatus component
EDTA Merck 108418
EZ-ECL Kit Biological Industries 1633664 Protein detection by western blotting
Glutamax Gibco 35050-061 Neuron and HEK293 maintenance
Glycerol Merck 104094 BDNF elution buffer, lysis buffer for western blot assays
Hettich Rotina 46R Centrifuge Hettich Discontinued Centrifuge used for clearing the medium of debris
Hettich Universal 32R Centrifuge Hettich Discontinued Centrifuge used for protein concentrator centrifugation
Horse Serum Gibco 16050-122 Neuron seeding
ImageQuant LAS 500 GE Healthcare Life Sciences 29005063 Western blot image acquisition
Imidazole Sigma I55513 BDNF buffer modification component
KCl Winkler BM-1370 PBS component
KH2PO4 Merck 104873 PBS component
Laminin Invitrogen 23017-015 Cover coating for compartmentalized neurons
Luer Tubing Adaptor BioRad 7323245 Chromatography apparatus component
Luminata™ Forte Western HRP Substrate Millipore WBLUF0100 Protein detection by western blotting
Mg(CH3COO)2 Merck 105819 BDNF monobiotinylation buffer
Mowiol 4-88 Calbiochem 475904 Mounting reagent for immunofluorescence assays
MyOne C1 Streptavidin Magnetic Beads Invitrogen 65001 Biotinylation verification
Na2HPO4 Merck 106586 BDNF buffer modification component
NaCl Winkler BM-1630 PBS component, BDNF buffer modification component
NaH2PO4 Merck 106346 BDNF buffer modification component
Neurobasal Medium Gibco 21103-049 Neuron maintenance
Ni-NTA Agarose Beads Qiagen 30210 BDNF AviTag purification
Nikon Ti2-E Nikon Microscope for fluorescence imaging
Nitrocellulose Membrane BioRad 1620115 Protein transfer for western blotting
ORCA-Flash4.0 V3 Digital CMOS camera Hamamatsu C13440-20CU Camera for epifluorescence imaging
P8340 Protease Inhibitor Cocktail Sigma P8340 BDNF buffer modification component
Paraformaldehyde Merck 104005 Fixative for immunofluorescence assays
Penicillin/Streptomycin Gibco 15140-122 Neuron maintenance
Poli-D-Lysine Corning DLW354210 Cover coating for compartmentalized neurons
Poli-L-Lysine Millipore P2363 Cover coating for non-compartmentalized neurons
Poly-Prep Chromatography Column BioRad 7311550 Chromatography apparatus component
Polyethyleneimine 25K Polysciences Inc. PLY-0296 HEK293 transfection
Quantum Dots 655 streptavidin conjugate Invitrogen Q10121MP Monobiotinylated BDNF AviTag label for live and fixed cell experiments
Saponin Sigma S4521 Detergent for immunofluorescence assays
Sucrose Merck 107687
Syldgard 184 silicone elastomer base Poirot 4019862 Microfluidic chamber preparation
TEMED Sigma T9281 SDS-PAGE gel preparation
Tris Winkler BM-2000 Lysis buffer component
Triton X100 Merck 108603 Cell permeabilization in immunofluorescence and western blot assays
Trypsin-EDTA 0.5% Gibco 15400-054 HEK293 passaging

References

  1. Huang, E., Reichardt, L. Neurotrophins: Roles in Neuronal Development and Function. Annual Review of Neuroscience. 24, 677-736 (2001).
  2. Skaper, S. D. The neurotrophin family of neurotrophic factors: an overview. Methods in Mollecular Biology. 846, 1-12 (2012).
  3. Gonzalez, A., Moya-Alvarado, G., Gonzalez-Billault, C., Bronfman, F. C. Cellular and molecular mechanism regulating neuronal growth by brain-derived neurotrophic factor. Cytoskeleton. 73 (10), 612-628 (2016).
  4. Cunha, C., Brambilla, R., Thomas, K. A simple role for BDNF in learning and memory. Frontiers in Mollecular Neuroscience. 3, 1 (2010).
  5. Bronfman, F. C., Lazo, O. M., Flores, C., Escudero, C. A., Lewin, G., Carter, B. Spatiotemporal intracelular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function. Neurotrophic Factor. Handbook of Experimental Pharmacology. 220, (2014).
  6. Ascano, M., Bodmer, D., Kuruvilla, R. Endocytic trafficking of neurotrophins in neural development. Trends in Cell Biology. 22 (5), 266-273 (2012).
  7. Deinhardt, K., Salinas, S., Verastegui, C., Watson, R., Worth, D., Hanrahan, S., Bucci, C., Schiavo, G. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron. 52 (2), 293 (2006).
  8. Escudero, C. A., et al. c-Jun N-terminal kinase (JNK)-dependent internalization and Rab5-dependent endocytic sorting medaited long-distance retrograde neuronal death induced by axonal BDNF-p75 signaling. Scientific Reports. 9, 6070 (2019).
  9. Vrabec, J. P., Levin, L. A. The neurobiology of cell death in glaucoma. Eye. 21, 11-14 (2007).
  10. Liot, G., Zala, D., Pla, P., Mottet, G., Piel, M., Saudou, F. Mutant huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. Journal of Neuroscience. 33 (15), 6298-6309 (2013).
  11. Zhou, B., Cai, Q., Xie, Y., Sheng, Z. H. Snapin recruits dynein to BDNF-TrkB signaling endosomes for retrograde axonal transport and is essential for dendrite growth of cortical neurons. Cell Reports. 2 (1), 42-51 (2012).
  12. Haubensak, W., Narz, F., Heumann, R., Lessmann, V. BDNF-GFP containing secretory granules are localized in the vicinity of synaptic junctions of cultured cortical neurons. Journal of Cell Science. 111 (11), 1483-1493 (1998).
  13. Adachi, N., et al. Glucocorticoid affects dendritic transport of BDNF-containing vesicles. Scientific Reports. 5, 12684 (2015).
  14. Biocompare: The Buyer’s Guide for Life Scientists. Mirus Bio. Cellular Toxicity Caused by Transfection: Why is it important Available from: https://www.biocompare.com/Bench-Tips/121111-Cellular-Toxicity-Caused-by-Transfection-Why-is-it-important/ (2012)
  15. Zhao, L., et al. Mechanism underlying activity-dependent insertion of TrkB into the neuronal surface. Journal of Cell Science. 122 (17), 3123-3136 (2009).
  16. Zhao, X., Zhou, Y., Weissmiller, A., Pearn, M., Mobley, W., Wu, C. Real-time imaging of axonal transport of quantum dot-labeled BDNF in primary neurons. Journal of Visualized Experiments. 91, 51899 (2014).
  17. Sung, K., Maloney, M., Yang, J., Wu, C. A novel method for producing mono-biotinylated, biologically active neurotrophic factors: an essential reagent for single molecule study of axonal transport. Journal of Neuroscience Methods. 200 (2), 121-128 (2011).
  18. Deerinck, T. The application of fluorescent quantum dots to confocal, multiphoton and electron microscopic imaging. Toxicologic Pathology. 36 (1), 112-116 (2008).
  19. Unsain, N., Nuñez, N., Anastasia, A., Mascó, D. H. Status epilepticus induces a TrkB to p75 neurotrophin receptor switch and increases brain-derived neurotrophic factor interaction with p75 neurotrophon receptor: an initial event in neuronal injury induction. Neurosciences. 154 (3), 978-993 (2008).
  20. Walker, J. M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol. 32, 5-8 (1994).
  21. Moya-Alvarado, G., Gonzalez, A., Stuardo, N., Bronfman, F. C. Brain-derived neurotrophic factor (BDNF) regulates Rab5-positive early endosomes in hippocampal neurons to induce dendritic branching. Frontiers in Cellular Neuroscience. 12, 493 (2018).
  22. Sasi, M., Vignoli, B., Canossa, M., Blum, R. Neurobiology of local and intercellular BDNF signaling. Pflugers Archiv European Journal of Physiology. 469 (5), 593-610 (2017).
  23. . The Rab5-Rab11 endosomal pathway is required for BDNF-induced CREB transcriptional regulation in neurons Available from: https://www.biorxiv.org/content/10.1101/844720v1 (2019)
  24. Mowla, , et al. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. Journal of Biological Chemistry. 276 (16), 12660-12666 (2001).
  25. Longo, P., Kavran, J., Kim, M. S., Leahy, D. Transient Mammalian Cell Transfection with Polyethyleneimine (PEI). Methods in Enzymology. 529, 227-240 (2013).
  26. Raymond, C., Tom, R., Perret, S., Moussouami, P., L’Abbé, D., St-Laurent, G., Durocher, Y. A simplified polyethyleneimine-mediated transfection process for large-scale and high-throughput applications. Methods. 55 (1), 44-51 (2011).
  27. Dalton, A., Barton, W. Over-expression of secreted proteins from mammalian cell lines. Protein Science. 23 (5), 517-525 (2014).
  28. Hunter, M., Yuan, P., Vavilala, D., Fox, M. Optimization of protein expression in mammalian cells. Current Protocols in Protein Science. 95 (1), 77 (2019).
  29. Stepanenko, A. A., Heng, H. H. Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. Mutation Research. 773, 91-103 (2017).
  30. Guerzoni, L. P., Nicolas, V., Angelova, A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharmaceutical Research. 34 (2), 492-505 (2017).
  31. Angelova, A., Angelov, B. Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. Neural Regeneration Research. 12 (6), 886-889 (2017).
check_url/fr/61262?article_type=t

Play Video

Citer Cet Article
Stuardo, N., Moya-Alvarado, G., Ramírez, C., Schiavo, G., Bronfman, F. C. An Improved Protocol to Purify and Directly Mono-Biotinylate Recombinant BDNF in a Tube for Cellular Trafficking Studies in Neurons. J. Vis. Exp. (161), e61262, doi:10.3791/61262 (2020).

View Video