Summary

基于胶囊的模型,用于在实验鼠身上的不成熟硬滴答阶段侵扰

Published: July 09, 2020
doi:

Summary

在这项研究中,利用附在实验鼠的胶囊,开发了硬滴答的仙女和幼虫阶段的喂养系统。喂养胶囊由柔性材料制成,并牢固地固定在小鼠上至少一周,并允许对滴答声喂养进行舒适的监测。

Abstract

滴答声是所有发育阶段(鸡蛋除外)的强制性血液喂养寄生虫,并被公认为各种病原体的载体。在滴答声研究中使用小鼠模型对于了解它们的生物学和滴答声-宿主-病原体相互作用至关重要。在这里,我们展示了一种非费力的技术,用于在实验鼠身上喂养未成熟的硬滴答阶段。该方法的优点是简单、持续时间短,以及在实验的不同时间点监视或收集刻度的能力。此外,该技术允许在同一只小鼠上连接两个单独的胶囊,这有利于各种实验,其中需要两组不同的虱子以同一动物为食。非刺激性、柔性胶囊由易于接近的材料制成,可最大限度地减少实验动物的不适。此外,安乐死是没有必要的,小鼠在实验后完全恢复,并可供重新使用。

Introduction

滴答声是几种病原体的重要载体,对动物和人类健康构成严重威胁。建立有效的喂养系统对于研究它们的生物学、虱子-宿主-病原体相互作用或建立有效的控制措施至关重要。目前,一些人工喂养系统,避免使用活的动物可用于滴答,2,3,4,4这些应使用,只要实验条件允许。3然而,在各种实验环境中,这些系统不能适当地模仿特定的生理特征,使用活的动物是取得相关结果所必需的。

实验鼠通常用于研究许多生物系统,并经常用作宿主喂养虱子5,6,7,8,9。,6,7,8,9在小鼠身上喂养未成熟虱子的两种最常见的方法包括自由侵扰和使用附着在小鼠身上的禁闭室。自由侵扰主要用于幼虫阶段和被感染的虱子可以下降到一个区域,他们可以恢复。禁闭室通常由丙烯酸或聚丙烯帽组成,粘在鼠标的背上。第一种技术是用于滴答声喂养的有效自然系统,但不允许在实验期间进行密切监测,因为单个滴答声分散在宿主体的不同部位。此外,跌落到恢复区会感染粪便和尿液10、11、12、13、14,,11,12,13,14如果动物与恢复区15之间没有分离,可能会严重影响虱子的体能,或被老鼠损坏或吃掉。基于腔室的系统允许将滴答声限制到一个定义的区域,但是,粘合过程是费力的,帽通常与胶水粘附微弱,因此它们经常在实验16、17、18、19,17,18期间分离。帽子也僵硬,不舒服,并导致皮肤反应,这防止了小鼠的再使用,并需要他们在实验后安乐死。

在之前的研究中,我们成功地开发了一种有效的系统,使用乙烯醋酸乙烯(EVA)泡沫制成,用于喂养实验室兔子20的虱子。在这里,我们调整这个系统到鼠标模型,并提出了一个简单和干净的方法,以饲料不成熟的硬滴答声阶段在封闭的胶囊由EVA泡沫。具体来说,我们的系统使用弹性EVA泡沫胶囊粘在剃光的小鼠回来与快速干燥(3分钟),非刺激性乳胶胶。该技术允许胶囊牢固和持久的附着在实验小鼠,以及有效的滴答声侵扰/收集在整个实验过程中。扁平胶囊由柔性材料制成,不妨碍小鼠用于血液采集或其他目的的操作。该系统主要适用于仙女虱子阶段,但稍作修改,也可用于喂养幼虫。该方法可以由一名有经验的人完成,不需要广泛的培训。

Protocol

请注意,只有在实验室满足所有福利和安全措施时,才能适用本协议。该协议获得动物实验伦理委员会允许使用小鼠进行滴答声喂养,许可证编号E 94 046 08。对于终点,动物在两个阶段(每阶段 4 分钟和 5 分钟)中暴露在 CO2 中 9 分钟。 1. 胶囊的准备 将 2 mm 厚 EVA 泡沫和粘合剂双粘性泡沫粘在一起(图 1A)。 使用直径为 20 mm 的皮?…

Representative Results

我们提出了详细的分步方法,在用于小鼠背部的EVA泡沫胶囊中喂养不成熟的硬滴答声阶段(图2)。当需要精确的滴答声监测和收集时,这种非费力的协议适用于各种类型的实验。这种方法的主要优点是简单、易于获得、性价比高的材料和短工期。此外,我们成功地将两个胶囊附在一只小鼠个体上(图2K),使我们能够在同一动物身上喂养两组不同的虱?…

Discussion

协议中最关键的一步是将胶囊牢固地粘合到小鼠皮肤上。因此,乳胶应均匀地应用于胶囊的整个EVA泡沫表面,并施加3分钟的恒定压力,特别是胶囊的左右两侧。我们还建议将胶囊尽可能向前放置,以避免鼠标使用其后爪将其移除。在我们的实验中,只有EVA泡沫和乳胶粘附在小鼠皮肤上得到了验证,我们无法保证使用不同的材料取得相同的结果。

在我们的实验中,没有观察到?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢阿兰·伯尼尔·法国国家农业研究所(INRAE)和奥恰安·勒·比德尔(ANSES)的技术援助。这项研究得到了D DIM一健康- 法国Régionéle-de-France(该项目的缩略语:神经帕提克)的支持。这些老鼠是 ANSES 购买的。杰弗里·布莱尔博士因为审阅了手稿的早期版本而得到认可。

Materials

EVA-foam 2 mm thick, (low density) Cosplay Shop EVA-45kg (950/450/2 mm) It can be ordered also via Amazon (ref. no. B07BLMJDXD)
Heat Shrink Tubing Electric Wire Wrap Sleeve Amazon B014GMT1AM Different diameters of Heat Shrink Tubing are available via Amazon.
Mice BALB/cByJ Charles River Strain code 627
Mice C57BL/6 Charles River Strain code 664
No-toxic Latex Glue Tear mender Fabric & Leather Adhesive Also available also via Amazon (ref. no. B001RQCTUU)
Punch Tool Hand Art Tool Amazon B07QPWNGBF Saled by amazon as Leather Working Tools 1-25mm Round Steel Leather Craft Cutter Working for Belt Strap
PVC Binding Covers Transparent Amazon B078BNLSNP Any transparent PVC sheet of ticknes between 0.150 mm to 0.180 mm is suitable
Self Adhesive Pad Sponge Double Coated Foam Tape Amazon B07RHDZ35J Saled by amazon as 2 Rolls Double Sided Foam Tape, Super Strong White Mounting Tape Foam
Transparent seal stickers (20 mm diameter circles) Amazon B01DAA6X66

References

  1. Sonenshine, D. E., Roe, M. . Biology of Ticks. , (2014).
  2. Kröber, T., Guerin, P. M. In vitro feeding assays for hard ticks. Trends in Parasitology. 23 (9), 445-449 (2007).
  3. Bonnet, S., et al. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology. 134 (2), 197-207 (2007).
  4. Bonnet, S., Liu, X. Laboratory artificial infection of hard ticks: A tool for the analysis of tick-borne pathogen transmission. Acarologia. 52 (4), 453-464 (2012).
  5. Kohls, G. M., Galtsoff, P. S., Lutz, F. E., Welch, P. S., Needham, J. G. Tick rearing methods with special reference to the Rocky Mountain wood tick, Dermacentor andersoni. Culture methods for invertebrate animals. , 246-256 (1937).
  6. Faccini, J. L. H., Chacon, S. C., Labruna, M. B. Rabbits (Oryctolagus cuniculus) as experimental hosts for Amblyomma dubitatum. Neumann (Acari: Ixodidae). Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 58 (6), 1236-1239 (2006).
  7. Chacon, S. C., Freitas, L. H. T., Barbieri, F. S. Relationship between weight and number of engorged Amblyomma cooperi. Nuttal (sic.) and Warburton, 1908 (Acari: Ixodidae) larvae and nymphs and eggs from experimental infestations on domestic rabbit. Brazilian Journal of Veterinary Parasitology. 13, 6-12 (2004).
  8. Sonenshine, D. E., Maramorsch, K., Mahmood, F. Maintenance of ticks in the laboratory. Maintenance of Human, Animal, and Plant Pathogen Vectors. , 57-82 (1999).
  9. Levin, M. L., Schumacher, L. B. M. Manual for maintenance of multi-host ixodid ticks in the laboratory. Experimental and Applied Acarology. 70 (3), 343-367 (2016).
  10. Almazán, C., et al. Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. Vaccine. 21 (13-14), 1492-1501 (2003).
  11. Banks, C. W., Oliver, J. H., Hopla, C. E., Dotson, E. M. Laboratory life cycle of Ixodes woodi. (Acari:Ixodidae). Journal of Medical Entomology. 35, 177-179 (1998).
  12. Almazán, C., et al. Characterization of three Ixodes scapularis cDNAs protective against tick infestations. Vaccine. 23 (35), 4403-4416 (2005).
  13. Levin, M. L., Ross, D. E. Acquisition of different isolates of Anaplasma phagocytophilum by Ixodes scapularis from a model animal. Vector Borne Zoonotic Diseases. 4 (1), 53-59 (2004).
  14. Heinze, D. M., Wikel, S. K., Thangamani, S., Alarcon-Chaidez, F. J. Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs. Parasites & Vectors. 6 (5), 26 (2012).
  15. Nuss, A. B., Mathew, M. G., Gulia-Nuss, M. Rearing, Ixodes scapularis, the Black-legged Tick: Feeding Immature Stages on Mice. Journal of Visualized Experiments. (123), e55286 (2017).
  16. Wada, T., et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. Journal of Clinical Investigation. 120 (8), 2867-2875 (2010).
  17. Saito, T. B., Walker, D. H. A Tick Vector Transmission Model of Monocytotropic Ehrlichiosis. The Journal of Infectious Diseases. 212 (6), 968-977 (2015).
  18. Boppana, V. D., Thangamani, S., Alarcon-Chaidez, F. J., Adler, A. J., Wikel, S. K. Blood feeding by the Rocky Mountain spotted fever vector, Dermacentor andersoni, induces interleukin-4 expression by cognate antigen responding CD4+ T cells. Parasites & Vectors. 2 (1), 47 (2009).
  19. Gargili, A., Thangamani, S., Bente, D. Influence of laboratory animal hosts on the life cycle of Hyalomma marginatum and implications for an in vivo transmission model for Crimean-Congo hemorrhagic fever virus. Frontiers in Cell and Infection Microbiology. 20 (3), 39 (2013).
  20. Almazán, C., et al. A Versatile Model of Hard Tick Infestation on Laboratory Rabbits. Journal of Visualized Experiments. (140), e57994 (2018).
  21. Zhijun, Y., et al. The life cycle and biological characteristics of Dermacentor silvarum Olenev (Acari: Ixodidae) under field conditions. Veterinary Parasitology. 168 (3-4), 323-328 (2010).
  22. Ahmed, B. M., Taha, K. M., El Hussein, A. M. Life cycle of Hyalomma anatolicum Koch, 1844 (Acari: Ixodidae) fed on rabbits, sheep and goats. Veterinary Parasitology. 177 (3-4), 353-358 (2011).
  23. Široký, P., Erhart, J., Petrželková, K. J., Kamler, M. Life cycle of tortoise tick Hyalomma aegyptium under laboratory conditions. Experimental and Applied Acarology. 54, 277-284 (2011).
  24. Chen, X., et al. Life cycle of Haemaphysalis doenitzi (Acari: Ixodidae) under laboratory conditions and its phylogeny based on mitochondrial 16S rDNA. Experimental and Applied Acarology. 56, 143-150 (2012).
  25. Jin, S. W., et al. Life Cycle of Dermacentor everestianus Hirst, 1926 (Acari: Ixodidae) under Laboratory Conditions. Korean Journal of Parasitology. 55 (2), 193-196 (2017).
  26. Labruna, M. B., Fugisaki, E. Y., Pinter, A., Duarte, J. M., Szabó, M. J. Life cycle and host specificity of Amblyomma triste (Acari: Ixodidae) under laboratory conditions. Experimental and Applied Acarology. 30 (4), 305-316 (2003).
  27. Breuner, N. E., et al. Failure of the Asian longhorned tick, Haemaphysalis longicornis, to serve as an experimental vector of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto. Ticks Tick Borne Diseases. 11 (1), 101311 (2020).
check_url/fr/61430?article_type=t

Play Video

Citer Cet Article
Mateos-Hernández, L., Rakotobe, S., Defaye, B., Cabezas-Cruz, A., Šimo, L. A Capsule-Based Model for Immature Hard Tick Stages Infestation on Laboratory Mice. J. Vis. Exp. (161), e61430, doi:10.3791/61430 (2020).

View Video