Summary

动物实时功能磁共振成像大脑映射

Published: September 24, 2020
doi:

Summary

动物大脑功能映射可以从实时功能磁共振成像(fMRI)实验设置中受益。利用动物MRI系统中实施的最新软件,我们建立了小动物功能磁共振成像的实时监测平台。

Abstract

动态功能磁共振成像反应在很大程度上取决于动物在麻醉或清醒状态下的生理状况。我们开发了一个实时fMRI平台,指导实验者在采集过程中即时监测fMRI反应,可用于修改动物的生理机能,以实现动物大脑中所需的血流动力学反应。实时功能磁共振成像设置基于14.1T临床前MRI系统,能够实时映射麻醉大鼠初级前爪体感皮层(FP-S1)中的动态fMRI反应。实时fMRI平台不是回顾性分析来研究导致fMRI信号变异性的混杂来源,而是提供了一种更有效的方案,使用定制的宏功能和MRI系统中的通用神经图像分析软件来识别动态fMRI反应。此外,它还为动物的大脑功能研究提供了即时故障排除可行性和实时生物反馈刺激范式。

Introduction

功能磁共振成像(fMRI)是一种非侵入性方法,用于测量与大脑神经活动相关的血流动力学反应123456789例如血氧水平依赖性(BOLD),脑血容量和流量信号。在动物研究中,血流动力学信号可受到麻醉10、清醒动物11的应激水平以及潜在的非生理伪影(例如心脏搏动和呼吸运动12、13、1415)的影响。尽管已经开发了许多后处理方法来为任务相关和静息状态功能动力学和连接映射提供fMRI信号的回顾性分析16171819,但很少有技术可以提供实时脑功能映射解决方案和动物大脑中的瞬时读数20(其中大部分主要用于人脑映射21 22,2324252627)。特别是这种实时功能磁共振成像成像方法在动物研究中是缺乏的。有必要建立一个功能磁共振成像平台,以实现实时脑状态依赖性生理阶段的研究,并为动物脑功能研究提供实时生物反馈刺激范式。

在本工作中,我们说明了使用MRI控制台软件的定制宏功能的实时fMRI实验设置,展示了对麻醉大鼠初级前爪体感皮层(FP-S1)中诱发的BOLD-fMRI反应的实时监测。这种实时设置允许使用现有的神经图像分析软件功能神经图像分析(AFNI)28,在功能图中可视化正在进行的大脑激活,以及以体素方式显示单个时间过程。用于动物研究的实时fMRI实验装置的制备在协议中描述。除了动物设置外,我们还提供详细的程序,使用最新的控制台软件和图像处理脚本来设置实时fMRI信号的可视化和分析。总之,拟议的用于动物研究的实时功能磁共振成像设置是使用MRI控制台系统监测动物大脑中动态功能磁共振成像信号的有力工具。

Protocol

这项研究是根据德国动物福利法(TierSchG)和动物福利实验动物条例(TierSchVersV)进行的。此处描述的实验方案由伦理委员会(§15 TierSchG)审查,并由国家当局批准(Regierungspräsidium,图宾根,巴登 – 符腾堡州,德国)。 1. 为小动物研究准备BOLD-fMRI实验装置 打开控制台软件以控制成像参数并获取MRI数据。注意:建议的实时功能磁共振成像设置是利用控制台软件(版…

Representative Results

图 3 和图 4 显示了具有电前爪刺激(3 Hz,4 s,脉冲宽度 300 us,2.5 mA)的代表性实时体素 BOLD-fMRI 时间过程和功能图。fMRI设计范式包括10次刺激前扫描,3次刺激扫描和12次刺激间扫描,总共8个时期(130次扫描)。总扫描时间为 3 分 15 秒(195 秒)。图3显示了实时采集格式中对侧FP-S1的体素时间过程(黑线),对应于块设计范式(红…

Discussion

功能磁共振成像信号的实时监测有助于实验者调整动物的生理机能,以优化功能映射。清醒动物的运动伪影以及麻醉作用是介导fMRI信号变异性的主要因素,混淆了信号本身的生物学解释3132,3334,35363738

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢陈D.博士和颜C.博士分享AFNI脚本,为PV 5设置实时fMRI,并感谢AFNI团队提供软件支持。这项研究得到了NIH脑计划资助(RF1NS113278-01,R01 MH111438-01)和S10仪器资助(S10 RR023009-01)的支持给Martinos中心,德国研究基金会(DFG)Yu215 / 3-1,BMBF 01GQ1702,以及马克斯普朗克学会的内部资助。

Materials

14.1T Bruker MRI system Bruker BioSpin MRI GmbH N/A
A365 Stimulus Isolator World Precision Instruments N/A
AcqKnowledge Software Biopac RRID:SCR_014279, http://www.biopac.com/product/acqknowledge-software/
AFNI Cox, 1996 RRID:SCR_005927, http://afni.nimh.nih.gov
CO2SMO (ETCO2/SpO2 Monitor), Model 7100 Novametrix Medical Systems Inc N/A
Isoflurane CP-Pharma Cat# 1214
Master-9 A.M.P.I N/A
Nanoliter Injector World Precision Instruments Cat# NANOFIL
Pancuronium Bromide Inresa Arzneimittel Cat# 34409.00.00
ParaVision 6 Bruker BioSpin MRI GmbH RRID:SCR_001964
Phosphate Buffered Saline (PBS) Gibco Cat# 10010-023
Rat: Sprague Dawley rat Charles River Laboratories Crl:CD(SD)
SAR-830/AP Ventilator CWE N/A
α-chloralose Sigma-Aldrich Cat# C0128-25G;RRID

References

  1. Ogawa, S., Lee, T. M., Kay, A. R., Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences U.S.A. 87 (24), 9868-9872 (1990).
  2. Belliveau, J. W., et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 254 (5032), 716-719 (1991).
  3. Stehling, M. K., Turner, R., Mansfield, P. Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science. 254 (5028), 43-50 (1991).
  4. Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., Hyde, J. S. Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine. 25 (2), 390-397 (1992).
  5. Kwong, K. K., et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Science U. S. A. 89 (12), 5675-5679 (1992).
  6. Ogawa, S., et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Science U. S. A. 89 (13), 5951-5955 (1992).
  7. Biswal, B., Yetkin, F. Z., Haughton, V. M., Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine. 34 (4), 537-541 (1995).
  8. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature. 453 (7197), 869-878 (2008).
  9. Kim, S. G., Ogawa, S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. Journal of Cerebral Blood Flow and Metabolism. 32 (7), 1188-1206 (2012).
  10. Peltier, S. J., et al. Functional connectivity changes with concentration of sevoflurane anesthesia. Neuroreport. 16 (3), 285-288 (2005).
  11. Dopfel, D., Zhang, N. Mapping stress networks using functional magnetic resonance imaging in awake animals. Neurobiology of Stress. 9, 251-263 (2018).
  12. Hu, X. P., Le, T. H., Parrish, T., Erhard, P. Retrospective Estimation and Correction of Physiological Fluctuation in Functional Mri. Magnetic Resonance in Medicine. 34 (2), 201-212 (1995).
  13. Birn, R. M. The role of physiological noise in resting-state functional connectivity. Neuroimage. 62 (2), 864-870 (2012).
  14. Caballero-Gaudes, C., Reynolds, R. C. Methods for cleaning the BOLD fMRI signal. Neuroimage. 154, 128-149 (2017).
  15. Pais-Roldan, P., Biswal, B., Scheffler, K., Yu, X. Identifying Respiration-Related Aliasing Artifacts in the Rodent Resting-State fMRI. Frontiers in Neuroscience. 12, 00788 (2018).
  16. Glover, G. H., Li, T. Q., Ress, D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine. 44 (1), 162-167 (2000).
  17. Chang, C., Cunningham, J. P., Glover, G. H. Influence of heart rate on the BOLD signal: The cardiac response function. Neuroimage. 44 (3), 857-869 (2009).
  18. Birn, R. M., Diamond, J. B., Smith, M. A., Bandettini, P. A. Separating respiratory-variation-related neuronal-activity-related fluctuations in fluctuations from fMRI. Neuroimage. 31 (4), 1536-1548 (2006).
  19. Golestani, A. M., Chang, C., Kwinta, J. B., Khatamian, Y. B., Chen, J. J. Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: Spatial specificity, test-retest reliability and effect of fMRI sampling rate. Neuroimage. 104, 266-277 (2015).
  20. Lu, H. B., et al. Real-time animal functional magnetic resonance imaging and its application to neurophamacological studies. Magnetic Resonance Imaging. 26 (9), 1266-1272 (2008).
  21. Cox, R. W., Jesmanowicz, A., Hyde, J. S. Real-time functional magnetic resonance imaging. Magnetic Resonance Medicine. 33 (2), 230-236 (1995).
  22. Lee, C. C., Jack, C. R., Rossman, P. J., Riederer, S. J. Real-time reconstruction and high-speed processing in functional MR imaging. American Journal of Neuroradiology. 19 (7), 1297-1300 (1998).
  23. Voyvodic, J. T. Real-time fMRI paradigm control, physiology, and behavior combined with near real-time statistical analysis. Neuroimage. 10 (2), 91-106 (1999).
  24. Cohen, M. S. Real-time functional magnetic resonance imaging. Methods. 25 (2), 201-220 (2001).
  25. Posse, S., et al. A new approach to measure single-event related brain activity using real-time fMRI: Feasibility of sensory, motor, and higher cognitive tasks. Human Brain Mapping. 12 (1), 25-41 (2001).
  26. Decharms, R. C. Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends in Cognitive Sciences. 11 (11), 473-481 (2007).
  27. Bruhl, A. B. Making Sense of Real-Time Functional Magnetic Resonance Imaging (rtfMRI) and rtfMRI Neurofeedback. International Journal of Neuropsychopharmacology. 18 (6), (2015).
  28. Cox, R. W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research. 29 (3), 162-173 (1996).
  29. Liou, W. W., Goshgarian, H. G. Quantitative assessment of the effect of chronic phrenicotomy on the induction of the crossed phrenic phenomenon. Experimental Neurology. 127 (1), 145-153 (1994).
  30. Shih, Y. Y., et al. Ultra high-resolution fMRI and electrophysiology of the rat primary somatosensory cortex. Neuroimage. 73, 113-120 (2013).
  31. Masamoto, K., Kim, T., Fukuda, M., Wang, P., Kim, S. G. Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex. Cerebral Cortex. 17 (4), 942-950 (2007).
  32. van Alst, T. M., et al. Anesthesia differentially modulates neuronal and vascular contributions to the BOLD signal. Neuroimage. 195, 89-103 (2019).
  33. Wu, T. L., et al. Effects of isoflurane anesthesia on resting-state fMRI signals and functional connectivity within primary somatosensory cortex of monkeys. Brain and Behavior. 6 (12), 00591 (2016).
  34. Liu, X., Zhu, X. H., Zhang, Y., Chen, W. The change of functional connectivity specificity in rats under various anesthesia levels and its neural origin. Brain Topography. 26 (3), 363-377 (2013).
  35. Liu, X. P., et al. Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol. Neuroimage. 83, 581-592 (2013).
  36. Hutchison, R. M., Hutchison, M., Manning, K. Y., Menon, R. S., Everling, S. Isoflurane induces dose-dependent alterations in the cortical connectivity profiles and dynamic properties of the brain’s functional architecture. Human Brain Mapping. 35 (12), 5754-5775 (2014).
  37. He, Y., et al. Ultra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and Their Correlation with Neuronal Intracellular Calcium Signals. Neuron. 97 (4), 925-939 (2018).
  38. Yoshida, K., et al. Physiological effects of a habituation procedure for functional MRI in awake mice using a cryogenic radiofrequency probe. Journal of Neuroscience Methods. 274, 38-48 (2016).
check_url/fr/61463?article_type=t

Play Video

Citer Cet Article
Choi, S., Takahashi, K., Jiang, Y., Köhler, S., Zeng, H., Wang, Q., Ma, Y., Yu, X. Real-Time fMRI Brain Mapping in Animals. J. Vis. Exp. (163), e61463, doi:10.3791/61463 (2020).

View Video