Summary

使用 循环介质等温扩 增检测灌溉水中的植物浮肿

Published: June 25, 2020
doi:

Summary

我们开发了一种 利用 滤纸DNA提取方法检测水源中植物性浮肿的方法,并结合循环中等温扩增(LAMP)测定法,可现场或实验室进行分析。

Abstract

植物性浮肿是一 种毁灭性的奥米妥特病原体,它影响许多重要的冬虫夏菜和库伯特作物,每年给蔬菜生产造成重大经济损失。 植物浮游生物是 土壤传播的,由于其长期生存结构(卵源和衣原体)能够抵抗风化和降解,在菜地中是一个长期存在的问题。分散的主要方法是通过生产动物孔,这是单细胞的,旗状孢子,可以游过表面或充满水的土壤毛孔的薄膜,可以积累在水坑和池塘。因此,灌溉池可能是病原体和疾病爆发的最初点源。在 灌溉水中检测P. 辣椒很难使用基于传统文化的方法,因为环境中存在的其他微生物, 如Pythium spp.,通常过度生长 P.辣椒 ,使其检测不到。为了确定水源 (灌溉 水、径流等)中是否存在P.辣椒孢子,我们开发了一种基于手泵的滤纸(8-10μm)方法,该方法捕获病原体的孢子(zoospore),后来用于通过一种新型的循环调节等温(LAMP)分析来放大病原体的DNA,该测定法旨在对 P. 这种方法可以放大和检测低浓度为1.2×102 的DNA,其灵敏度是传统PCR的40倍。在测试密切相关的物种时,没有获得交叉放大。LAMP 还使用色度 LAMP 主混合染料进行,显示可用肉眼读取的结果,以便现场快速检测。该协议可适用于通过受污染的灌溉系统居住、积累或分散的其他病原体。

Introduction

由于水成本增加和用水背后的环境问题,农场和托儿所的回收用水正变得越来越受欢迎。为种植者开发了许多灌溉方法,以减少植物病的传播和发生。无论水源(灌溉或降水),径流都会产生,许多蔬菜和苗圃种植者都有一个池塘来收集和回收径流1。这创造了一个水库,为可能的病原体积累有利于病原体的传播,当再生水被用来灌溉作物2,3,4。,3,4Oomycete植物病原体特别受益于这种做法,因为动物孔会积聚在水中,主要分散孢子是自动的,但需要地表水5,6,7。,6,7植物性植物素是一种异种病原体,以不同的方式影响大量的多叶和库伯特作物。通常,症状是阻尼幼苗,根和冠腐烂;然而,在黄瓜,南瓜,甜瓜,南瓜,西瓜,茄子和胡椒等作物,整个收成可能会因为水果腐烂而损失。虽然已知有检测这种植物病原体的方法,但大多数都要求已经发生感染,这为时已晚,任何预防性杀菌剂都不能产生显著的影响10。

传统的灌溉水测试方法,用于检测和诊断目标微生物是一种过时的方法,当速度和敏感性是成功的关键和有利可图的作物生产11,12。,12易受靶向病原体影响的植物组织(例如,P. 辣椒茄子)附着在经过改良的陷阱上,该陷阱在被移除和检查感染之前被悬浮在灌溉池中较长时间。然后将植物组织的样品镀在半选择性介质(PARPH)上,并孵育成培养,然后使用复合显微镜13进行形态识别。其他植物病原体有其它类似的检测方法,使用选择性培养,并在分培养14、15之前,先将少量受污染的水电。这些方法需要2到6周,几轮亚培养来分离生物体,并体验植物预防诊断,以便能够识别每个物种的关键形态特征。由于水源中其他微生物的干扰等因素,这些传统方法对受P.辣椒污染的灌溉水检测不成功。一些快速生长的微生物,如Pythium spp.和水传播的细菌,可以在盘子里过度生长,使P. capsici无法检测到16,17。,17

本研究的目的是开发一种敏感和特定的分子方法,可用于田间和实验室设置,以检测灌溉水中的P.辣椒动物孔。该协议包括开发一个新的循环介质等温放大(LAMP)底像集,能够特别放大P.卡普西奇,基于1121基对(bp)片段的P.capsici18,19。,19与为这项研究开发20的测定相比,使用了由董等人(2015年)开发的LAMP底像。

LAMP检测是一种相对较新的分子检测形式,已被证明比常规聚合酶链反应(PCR)21更快速、更灵敏、更特异性。一般来说,传统的PCR测定不能检测低于500份(1.25皮克/μL);相比之下,先前的研究表明,LAMP的灵敏度可以比传统PCR高10至1,000倍,并且能够轻松检测出1 fg/μL的基因组DNA22,23。,23此外,通过使用便携式加热块进行放大和色度染料改变阳性样品的颜色(无需电泳),可以快速(通常 30 分钟内)和现场(现场)进行测定。本研究中,我们利用滤波器提取方法比较了PCR和LAMP测定的灵敏度。拟议的检测方法使研究人员和推广剂能够在不到两个小时的时间轻松检测不同水源中P.辣椒孢子的存在。该测定方法证明比传统的PCR更敏感,通过检测种植者使用的灌溉水中的病原体存在,得到了原地验证。这种检测方法将使种植者能够估计用于灌溉的各种水源中病原体的存在和种群密度,防止破坏性爆发和经济损失。

Protocol

1. 使用便携式循环 介质 等温扩增从灌溉水中对植物浮游水进行现场检测 设置泵和过滤器 将滤瓶连接到连接到手泵的管子上,以便当泵激活时,空气会通过过滤瓶口拉进。 将 Buchner 漏斗放入滤瓶口的橡胶塞中,并将适当大小的滤纸放入布赫纳漏斗中,以便空气通过滤纸输送。滤纸的保留尺寸应为 15 μm。注:滤纸必须适合布赫纳漏斗的边缘,以便最少的水会流经滤?…

Representative Results

LAMP 方法的优化在这项研究中,我们利用便携式 循环介质等温 扩解(LAMP)测定,检测了灌溉水中存在植物浮肿。首先,通过测试不同的LAMB底因浓度[F3,B3(每个0.1±0.5μM),对拟议的LAMB测定进行了优化;LF、LB(每磅0.5~1.0 μM)和FIP、BIP(每片0.8~2.4 μM)、持续时间(30~70分钟)和温度(55~70 °C)。本研究使用的最终 LAMP 底木组合是:每个 F3 和 B3 底注的 0.2 μM,每个环路-F 和?…

Discussion

对植物病菌的灌溉水进行测试,是种植者使用灌溉池塘和再生水的关键一步。灌溉池为一些植物病菌提供了一个水库和繁殖地,因为过量的灌溉水从田间流向池塘,携带任何可能存在16、27,的病原体。在大型水源中检测植物病原体的传统方法是使用悬浮在池塘中的易感宿主组织(如水果、叶子)为病原体设置诱饵,等待感染发生,然后…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了佐治亚州蔬菜商品委员会项目ID#FP00016659的财政支持。作者感谢佐治亚大学季平生博士和俄亥俄州立大学的安妮·多伦斯博士提供 纯正的菲托波拉spp文化。我们还感谢王丽和德洛里斯·维尼在整个研究中的技术援助。

Materials

Agarose gel powder Thomas Scientific C997J85
Buchner funnel Southern Labware JBF003
Bullet Blender Next Advance BBX24
Centrifuge 5430 Eppendorf 22620509
Chloroform Fischer Scientific C298-500
CTAB solution Biosciences 786-565
Dneasy Extraction Kit Qiagen 69104
Filter Flask United FHFL1000
Filter Paper United Scientific Supplies FPR009
Gel Green 10000X Thomas Scientific B003B68 (1/EA)
Genie III OptiGene
Hand pump Thomas Scientific 1163B06
Iso-amyl Alcohol Fischer Scientific BP1150-500
LAVA LAMP master mix Lucigen 30086-1
Magnetic bead DNA extraction Genesig genesigEASY-EK
Magnetic Separator Genesig genesigEASY-MR
polyvinylpyrrolidone Sigma Aldrich PVP40-500G
Primers Sigma Aldrich
Prism Mini Centrifuge Labnet C1801
T100 Thermal Cycler Bio-Rad 1861096
UV Gel Doc Analytik Jena 849-00502-2
Warmstart Colorimetric Dye Lucigen E1800m
Wide Mini ReadySub-Cell GT Cell Bio-Rad 1704489EDU
70% isopropanol Fischer Scientific A451-1

References

  1. Hong, C., Moorman, G. J. Plant pathogens in irrigation water: challenges and opportunities. Critical Reviews in Plant Sciences. 24 (3), 189-208 (2005).
  2. Malkawi, H. I., Mohammad, M. J. Physiology, Genetics, Morphology, & Microorganisms, E. o. Survival and accumulation of microorganisms in soils irrigated with secondary treated wastewater. Journal of Basic Microbiology. 43 (1), 47-55 (2003).
  3. Bush, E. A., Hong, C., Stromberg, E. L. Fluctuations of Phytophthora and Pythium spp. in components of a recycling irrigation system. Plant Disease. 87 (12), 1500-1506 (2003).
  4. Ghimire, S. R., et al. Distribution and diversity of Phytophthora species in nursery irrigation reservoir adopting water recycling system during winter months. Journal of Phytopathology. 159 (11-12), 713-719 (2011).
  5. Hausbeck, M. K., Lamour, K. H. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Disease. 88 (12), 1292-1303 (2004).
  6. Gevens, A., Donahoo, R., Lamour, K., Hausbeck, M. Characterization of Phytophthora capsici from Michigan surface irrigation water. Phytopathology. 97 (4), 421-428 (2007).
  7. Thomson, S., Allen, R. Occurrence of Phytophthora species and other potential plant pathogens in recycled irrigation water. Plant Disease Reporter. 58 (10), 945-949 (1974).
  8. Lamour, K. H., Stam, R., Jupe, J., Huitema, E. The oomycete broad-host-range pathogen Phytophthora capsici. Journal of Molecular Plant Pathology. 13 (4), 329-337 (2012).
  9. Sanogo, S., Ji, P. Water management in relation to control of Phytophthora capsici in vegetable crops. Agricultural Water Management. 129, 113-119 (2013).
  10. Zhang, Z., Li, Y., Fan, H., Wang, Y., Zheng, X. Molecular detection of Phytophthora capsici in infected plant tissues, soil and water. Plant Pathology. 55 (6), 770-775 (2006).
  11. Trout, C., Ristaino, J., Madritch, M., Wangsomboondee, T. Rapid detection of Phytophthora infestans in late blight-infected potato and tomato using PCR. Plant Disease. 81 (9), 1042-1048 (1997).
  12. Sankaran, S., Mishra, A., Ehsani, R., Davis, C. A review of advanced techniques for detecting plant diseases. Commputers and Electronics in Agriculture. 72 (1), 1-13 (2010).
  13. Wang, Z., et al. Development of an improved isolation approach and simple sequence repeat markers to characterize Phytophthora capsici populations in irrigation ponds in southern Georgia. Applied and Environmental Microbiology. 75 (17), 5467-5473 (2009).
  14. Ali-Shtayeh, M., MacDonald, J. Occurrence of Phytophthora species in irrigation water in the Nablus area (West Bank of Jordan). Phytopathologia Mediterranea. , 143-150 (1991).
  15. Pringsh, P. Comparison of serological and culture plate methods for detecting species of Phytophthora, Pythium, and Rhizoctonia in ornamental plants. Plant Disease. 74 (9), 655 (1990).
  16. Stewart-Wade, S. M. Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrigation Science. 29 (4), 267-297 (2011).
  17. Aragaki, M., Uchida, J. Y. Morphological distinctions between Phytophthora capsici and P. tropicalis sp. nov. Mycologia. 93 (1), 137-145 (2001).
  18. Tomlinson, J., Boonham, N. Potential of LAMP for detection of plant pathogens. CAB Reviews Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources. 3 (066), 1-7 (2008).
  19. Li, P., et al. A PCR-based assay for distinguishing between A1 and A2 mating types of Phytophthora capsici. Journal of the American Society for Horticultural Science. 142 (4), 260-264 (2017).
  20. Dong, Z., et al. Loop-mediated isothermal amplification assay for sensitive and rapid detection of Phytophthora capsici. Canadian Journal of Plant Pathology. 37 (4), 485-494 (2015).
  21. Khan, M., et al. Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of Alternaria solani. Frontiers in Microbiology. 9, 2089 (2018).
  22. Sowmya, N., Thakur, M., Manonmani, H. K. Rapid and simple DNA extraction method for the detection of enterotoxigenic Staphylococcus aureus directly from food samples: comparison of PCR and LAMP methods. Journal of Applied Microbiology. 113 (1), 106-113 (2012).
  23. Waliullah, S., et al. Comparative analysis of different molecular and serological methods for detection of Xylella fastidiosa in blueberry. PLOS ONE. 14 (9), 0221903 (2019).
  24. Böhm, J., et al. Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants. Journal of Phytopathology. 147, 409-416 (1999).
  25. Klimczak, L., Prell, H. J. C. Isolation and characterization of mitochondrial DNA of the oomycetous fungus Phytophthora infestans. Current Genetics. 8 (4), 323-326 (1984).
  26. Ghimire, S. R., et al. Detection of Phytophthora species in a run-off water retention basin at a commercial nursery in plant hardiness zones 7 b of Virginia in winter. Phytopathology. 96 (6), (2006).
  27. Feng, W., Hieno, A., Kusunoki, M., Suga, H., Kageyama, K. J. P. LAMP detection of four plant-pathogenic oomycetes and its application in lettuce fields. Plant Disease. 103 (2), 298-307 (2019).
  28. Aglietti, C., et al. Real-time loop-mediated isothermal amplification: an early-warning tool for quarantine plant pathogen detection. AMB Express. 9 (1), 50 (2019).
  29. Almasi, M. A. Development of a colorimetric loop-mediated isothermal amplification assay for the visual detection of Fusarium oxysporum f. sp. melonis. Horticultural Plant Journal. 5 (3), 129-136 (2019).
  30. Gill, D. J. Pathogenic Pythium from irrigation ponds. Plant Disease Reporter. 54 (12), 1077-1079 (1970).

Play Video

Citer Cet Article
Hudson, O., Waliullah, S., Hand, J., Gazis-Seregina, R., Baysal-Gurel, F., Ali, M. E. Detection of Phytophthora capsici in Irrigation Water using Loop-Mediated Isothermal Amplification. J. Vis. Exp. (160), e61478, doi:10.3791/61478 (2020).

View Video