Summary

通过电子压图进行本地化无浴金属复合电镀

Published: September 22, 2020
doi:

Summary

此处介绍的是无洗澡电镀协议,其中含有复合颗粒的停滞金属盐膏在高负载下被减少为金属复合材料。此方法解决了将复合材料颗粒嵌入金属基质的其他常见电镀形式(喷射、刷子、浴)所面临的挑战。

Abstract

将嵌入金属基质中的颗粒进行复合电镀可增强金属涂层的特性,使其或多或少导电、坚硬、耐用、润滑或荧光。然而,它比金属电镀更具挑战性,因为复合颗粒要么1)没有充电,所以它们对阴极没有很强的静电吸引力,2) 是吸湿的,被水化壳阻塞,或者3) 太大,在搅拌时不能保持阴极的停滞。在这里,我们描述了无浴镀电方法的细节,该方法涉及阳极和阴极镍板夹层水浓缩电解质糊,含有大型吸湿磷银颗粒和亲水膜。施加电位后,镍金属沉积在停滞的磷颗粒周围,将它们困在薄膜中。复合涂层的特点是光学显微镜,用于薄膜粗糙度、厚度和复合表面载荷。此外,荧光光谱可用于量化这些薄膜的照明亮度,以评估各种电流密度、涂层持续时间和磷负载的影响。

Introduction

传统的电镀广泛用于将各种金属、合金和金属复合材料的薄膜沉积到导电表面,以使它们的功能化,适用于预期的1、2、3、4、5、6、7、8、9、10、11、12。该方法为航空航天、汽车、军事、医疗和电子设备制造的部件添加了金属表面处理。要镀的物体阴极浸入含有金属盐前体的水浴中,通过应用化学或电位,这些前体在物体表面被减为金属。非带电复合颗粒可通过在涂层期间将其添加到浴池中,以提高涂层的薄膜性能,以提高金属氧化物和碳化物的硬度,聚合物的平滑度或液体油润滑12,13。然而,由于这些粒子对阴极缺乏内在的吸引力,在电镀13、14、15金属中,合成的比例仍然很低。对于没有吸附到阴极足够长的时间被生长的金属薄膜嵌入的大颗粒来说,这尤其成问题。此外,吸湿颗粒在水溶液中溶解,其水化壳充当阻碍与阴极16接触的物理屏障。

一些有希望的方法已被证明,通过使用干燥的非极性溶剂完全去除水化屏障17,或通过装饰复合颗粒与带电表面活性剂分子16,扰乱水化壳,使粒子和阴极之间的接触,以减轻这种影响。但是,由于这些方法涉及有机材料,薄膜中可能发生碳污染,这些有机材料的分解可能发生在电极上。例如,使用的有机溶剂(DMSO2和乙酰胺)在惰性气氛中加热至 130°C,用于无气涂层;然而,我们发现他们在空气中的涂层是不稳定的。由于电极的电阻加热,与有机材料的氧化还原反应可能导致杂质或金属纳米粒子异构成核和生长的点因此,需要一种无有机水电镀方法,解决粒子阴极吸附的长期挑战。到目前为止,金属复合浴涂层已被证明嵌入直径达19微米的颗粒,高达15%的负载16,17。

对此,我们描述了一种无机无浴电击方法,该方法迫使复合颗粒在高表面覆盖下嵌入薄膜,尽管其体积大,具有吸湿性20。通过去除浴池,该工艺不涉及危险涂层液体容器,且要镀膜的物体无需被淹没。因此,大型、繁琐或其他腐蚀或对水敏感的物体,可以在复合材料的特定区域进行镀压或”盖章”。此外,清除多余的水需要减少液体危险废物的清理。

在这里,我们演示了这种方法,通过共同沉积无毒和空气稳定的欧氏和掺杂的钚,氧化铝(87±30μm)与镍在高负荷(高达80%)共同沉积。,生产明亮的荧光金属薄膜。这与以前在浴缸里镀上的例子形成鲜明对比,因此仅限于小(纳米到几微米)荧光粉12。此外,以前报道的电极沉积膜只有在短波紫外光下才产生荧光,但最近的一份报告称,在具有等离子电解质氧化的氧化铝膜中,含有1~5公明氧化铝氧化晶体。荧光金属薄膜在许多行业可有影响深远的应用,包括路标照明21、飞机维修设备定位和识别20、汽车和玩具装饰、隐形信息、产品认证22、安全照明、机械应力识别10和摩擦磨损目视检查12、16。尽管这些潜在的用途发光的金属表面,此方法也可以扩大,包括额外的大和/或吸湿复合颗粒,以产生新的品种金属复合功能涂层,以前不可能通过电镀。

Protocol

1. 制备涂层盐 注意:镍盐和玻酸是有毒的,应使用适当的个人防护设备,包括硝酸盐手套、护目镜和实验室外套进行处理。在烟罩中应处理强酸和碱,所有废物应作为危险废物处理。 使用平衡,权衡以下粉末在这些比率:10.000 g 的 NiSO4+6H2O,2.120 g 的 NiCl2+6H2O,1.600 g 的 H3BO3并组合在一个小瓶中。有关浓度,请参?…

Representative Results

遵循此协议后,金属薄涂层应镀到阴极表面,并包含添加到涂层膏中的复合颗粒。荧光或彩色颗粒的结合可以通过目视检查来观察,因为与未涂装表面相比,外观发生变化(图1A1-A3)。为了研究复合颗粒的表面覆盖率百分比,并观察涂层的表面形态,可以使用光学显微镜(图1)。样品可以自上而下观察(图1B1-B…

Discussion

电击的关键步骤。 无浴电击与传统沐浴电镀共享许多相同的关键步骤。其中包括正确清洁电极,将金属离子混合到电解质中,并施用外部或化学(无电电镀)电镀,使金属在阴极上减少。此外,在酸活化后,应避免阳极和阴极的氧化,通过快速用水冲洗,并添加这些电极到设置中。

与传统的沐浴电镀相比,电镀。据报道,一些金属复合荧光金属薄膜…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了飞机设备可靠性和可维护性改进计划和帕图森特伙伴关系的支持。汤森得到了 ONR 学院研究金的支持。作者还感谢 SMCM 化学和生物化学系教职员工和学生的一般支持,包括 SMCM 足球队的支持。

Materials

37% M Hydrochloric Acid (aq) SigmaAldrich 320331-500ML corrosive – handle in fume hood
70% Nitric Acid (aq) SigmaAldrich 438073-500ML corrosive – handle in fume hood
Barium magnesium aluminate, europium doped (s) SigmaAldrich 756512-25G fine powder
Boric Acid (s) SigmaAldrich B6768-500G toxic
Cotton Swab Q-tips Q-tips Cotton Swabs
ImageJ National Institutes of Health IJ 1.46r free software
Nickel (II) chloride hexahydrate (s) SigmaAldrich 223387-500G toxic
Nickel (II) sulfate hexahydrate (s) SigmaAldrich 227676-500G toxic
Nickel foil (s) AliExpress Ni99.999
Nitrile gloves Fisher Scientific 19-149-863B
nylon membrane (s) Tisch Scientific RS10133
Optical Microscope equipped with FTIC filter (470 ± 20 nm) Nikon Eclipse 80i
Plastic Wrap Fisher Scientific 22-305654
Porcelain Mortar Fisher Scientific FB961A
Porcelain Pestle Fisher Scientific FB961K
Potassium Hydroxide (s) SigmaAldrich 221473-25G corrosive
Potentiostat with platinum wire Gamry Instruments 1000E
Scoopula Fisher Scientific 14-357Q
Spectrofluorometer Photon Technology International QM-40
Strontium aluminate, europium and dysprosium doped (s) GloNation 756539-25G powder
Variable linear DC power supply Tekpower TP3005T
Yttrium oxide, europium doped (s) SigmaAldrich 756490-25G fine powder

References

  1. Hunt, W. H., et al. . Comprehensive Composite Materials. , (2000).
  2. Hovestad, A., Janssen, L. J. J. Electrochemical codeposition of inert particles in a metallic matrix. Journal of Applied Electrochemistry. 25 (6), 519-527 (1995).
  3. Zimmerman, A. F., Clark, D. G., Aust, K. T., Erb, U. Pulse electrodeposition of Ni-SiC nanocomposite. Materials Letters. 52 (1), 85-90 (2002).
  4. Devaneyan, S. P., Senthilvelan, T. Electro Co-deposition and Characterization of SiC in Nickel Metal Matrix Composite Coatings on Aluminium 7075. Procedia Engineering. 97, 1496-1505 (2014).
  5. Lekka, M., Kouloumbi, N., Gajo, M., Bonora, P. L. Corrosion and wear resistant electrodeposited composite coatings. Electrochimica Acta. 50 (23), 4551-4556 (2005).
  6. Balaraju, J. N., Sankara Narayanan, T. S. N., Seshadri, S. K. Electroless Ni-P composite coatings. Journal of Applied Electrochemistry. 33 (9), 807-816 (2003).
  7. Jugović, B., Stevanović, J., Maksimović, M. Electrochemically deposited Ni + WC composite coatings obtained under constant and pulsating current regimes. Journal of Applied Electrochemistry. 34 (2), 175-179 (2004).
  8. Hilla, F., et al. Fabrication of self-lubricating cobalt coatings on metal surfaces. Nanotechnology. 18 (11), 115703 (2007).
  9. Abi-Akar, H., Riley, C., Maybee, G. Electrocodeposition of Nickel-Diamond and Cobalt-Chromium Carbide in Low Gravity. Chemistry of Materials. 8 (11), 2601-2610 (1996).
  10. Zhang, X., Chi, Z., Zhang, Y., Liu, S., Xu, J. Recent Advances in Mechanochromic Luminescent Metal Complexes. Journal of Materials Chemistry C. 1, 3376-3390 (2013).
  11. Lancsek, T., Feldstein, M. Composite electroless plating. US Patent. , (2006).
  12. Walsh, F. C., Ponce de Leon, C. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Transactions of the Institute of Materials Finishing. 92 (2), 83-98 (2014).
  13. Roos, J. R., Celis, J. P., Fransaer, J., Buelens, C. The development of composite plating for advanced materials. Journal of The Minerals, Metals and Materials Society. 42 (11), 60-63 (1990).
  14. Guglielmi, N. Kinetics of the Deposition of Inert Particles from Electrolytic Baths. Journal of The Electrochemical Society. 119 (8), 1009-1012 (1971).
  15. Celis, J. P., R, J. R., Buelens, C. A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix. Journal of The Electrochemical Society. 134 (6), 1402-1408 (1987).
  16. He, Y., et al. The monitoring of coating health by in situ luminescent layers. RSC Advances. 5 (53), 42965-42970 (2015).
  17. Ganapathi, M., et al. Electrodeposition of luminescent composite metal coatings containing rare-earth phosphor particles. Journal of Materials Chemistry. 22 (12), 5514-5522 (2012).
  18. Monnens, W., Deferm, C., Sniekers, J., Fransaer, J., Binnemans, K. Electrodeposition of indium from non-aqueous electrolytes. Chemical Communications. 55 (33), 4789-4792 (2019).
  19. Low, C. T. J., Wills, R. G. A., Walsh, F. C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surface and Coatings Technology. 201 (1), 371-383 (2006).
  20. Gerwitz, C. N., David, H. M., Yan, Y., Shaw, J. P., Townsend, T. K. Bathless Inorganic Composite Nickel Plating: Dry-Cell Stamping of Large Hygroscopic Phosphor Crystals. Advanced Materials Interfaces. 7 (4), (2020).
  21. Bite, I., et al. Novel method of phosphorescent strontium aluminate coating preparation on aluminum. Materials and Design. 160 (15), 794-802 (2018).
  22. Feldstein, M. D. Coatings with identification and authentication properties. US Patent. , (2012).
  23. Rose, I., Whittingham, C. . Nickel Plating Handbook. , (2014).
  24. Anderson, D. M., et al. . Electroplating Engineering Handbook. , (1996).
  25. Helle, K., Walsh, F. Electrodeposition of Composite Layers Consisting of Inert Inclusions in a Metal Matrix. Transactions of the Institute of Metal Finishing. 75 (2), 53-58 (1997).
  26. Kerr, C., Barker, D., Walsh, F., Archer, J. The Electrodeposition of Composite Coatings based on Metal Matrix-Included Particle Deposits. Transactions of the Institute of Metal Finishing. 78 (5), 171-178 (2000).
  27. Walsh, F. C., Wang, S., Zhou, N. The electrodeposition of composite coatings: Diversity, applications and challenges. Current Opinion in Electrochemistry. 20, 8-19 (2020).
  28. Feldstein, N. Functional coatings comprising light emitting particles. US Patent. , (1996).
  29. Feldstein, N. Composite plated articles having light-emitting properties. US Patent. , (1998).
  30. Zimmerman, E. M. Method of Jet Plating. US Patent. , (1957).
  31. Schwartz, B. J. Method of Electroplating. United States Patent. , (1961).
check_url/fr/61484?article_type=t

Play Video

Citer Cet Article
Townsend, T. K., Hancock, J., Russell, C., Shaw, J. P. Localized Bathless Metal-Composite Plating via Electrostamping. J. Vis. Exp. (163), e61484, doi:10.3791/61484 (2020).

View Video