Summary

Functional Analysis of Tumor-Infiltrating Myeloid Cells by Flow Cytometry and Adoptive Transfer

Published: March 05, 2021
doi:

Summary

This protocol provides reliable methods of solid tumor dissociation and myeloid cell isolation in murine intradermal or subcutaneous tumor models. Flow cytometry allows for phenotypic characterization of heterogeneous myeloid populations within the tumor microenvironment and sorting will demonstrate their functionality in the context of adoptive transfer.

Abstract

The tumor-infiltrating myeloid cell compartment represents a heterogeneous population of broadly immunosuppressive cells that have been exploited by the tumor to support its growth. Their accumulation in tumor and secondary lymphoid tissue leads to the suppression of antitumor immune responses and is thus a target for therapeutic intervention. As it is known that the local cytokine milieu can dictate the functional programming of tumor-infiltrating myeloid cells, strategies have been devised to manipulate the tumor microenvironment (TME) to express a cytokine landscape more conducive to antitumor myeloid cell activity. To evaluate therapy-induced changes in tumor-infiltrating myeloid cells, this paper will outline the procedure to dissociate intradermal/subcutaneous tumor tissue from solid tumor-bearing mice in preparation for leukocyte recovery. Strategies for flow cytometric analysis will be provided to enable the identification of heterogeneous myeloid populations within isolated leukocytes and the characterization of unique myeloid phenotypes. Lastly, this paper will describe a means of purifying viable myeloid cells for functional assays and determining their therapeutic value in the context of adoptive transfer.

Introduction

The tumor microenvironment (TME) is comprised of rapidly proliferating neoplastic cells and a surrounding heterogeneous stromal cell compartment. As growing tumors are often poorly vascularized, the TME is a peripheral site uniquely characterized by hypoxia, nutrient deprivation, and acidosis1. To survive in this landscape, tumor stress responses and metabolic reprogramming result in the secretion of soluble factors that promote tissue remodeling and angiogenesis as well as the selective recruitment of immune cells2. As myeloid cells are one of the most abundant type of hematopoietic cells in the TME, there is increasing interest in examining the role of tumor-infiltrating myeloid cells in the TME.

Myeloid cells are a heterogenous and plastic group of innate immune cells including monocytes, macrophages, dendritic cells, and granulocytes. Although they have critical roles in tissue homeostasis and adaptive immune response regulation, their function can be polarizing depending on the composition of activation signals within the local microenvironment3. Tumors take advantage of myeloid cell characteristics through the secretion of soluble factors within the TME. These alternative signals can divert myelopoiesis towards immature differentiation and skew the function of existing tumor-infiltrating myeloid cells3. Indeed, myeloid cells within the TME often promote cancer progression and can suppress antitumor immune responses, leading to adverse effects on cancer therapy.

Although therapeutic strategies promoting the depletion of immunosuppressive myeloid cells have been shown to delay tumor growth4, the lack of target specificity risks the removal of immunostimulatory myeloid cells, which by contrast, aid in the resolution of cancer. These inflammatory myeloid cells can exert profound antitumor effects including direct tumor cell killing and activation of cytotoxic CD8+ T cells5. Alternatively, strategies normalizing the composition and function of myeloid cells in the TME have shown therapeutic success6; however, the biological mechanisms underlying their re-education towards an antitumor phenotype have still not been fully understood. Ultimately, a comprehensive characterization of tumor myeloid cells is necessary for further improvement of cancer therapy.

Unfortunately, reproducible disaggregation of tumors for myeloid cell isolation is challenging. Tumor-derived myeloid cells are sensitive to ex vivo manipulation compared to other leukocyte subsets, and the aggressiveness of tumor processing can lead to enzymatic epitope cleavage and reduced viability of recovered cells7. The purpose of this method is to provide a reliable means of tumor dissociation to preserve surface marker integrity for analysis and cellular vitality for functional study. In comparison to tumor-infiltrating leukocyte (TIL) isolation protocols that favor harsher enzymatic mixes to enhance the reproducible release of various cellular subsets, this method favors more conservative enzymatic digestion to maximize myeloid cell recovery. High-level multi-color flow gating strategies are also provided to identify murine tumor myeloid cell subsets for further characterization and/or sorting.

Protocol

NOTE: All animal studies complied with the Canadian Council on Animal Care guidelines and were approved by McMaster University's Animal Research Ethics Board. 1. Tumor harvest and dissociation Inoculate 6-8-week-old, female, C57BL/6 mice intradermally/subcutaneously with 2 × 105 B16 melanoma cells as described by Nguyen et al.8 Allow tumors to grow for 7 days before harvesting. Euthanize the mouse by cervical dislo…

Representative Results

The results demonstrate that this method produces a high yield of myeloid cells from solid murine tumors. The preservation of receptor integrity and cellular viability facilitates reliable functional analysis of the desired myeloid subsets. These improvements to myeloid cell isolation allowed the discernment of the changing function of intratumoral myeloid cells upon normalization of the TME with the class I histone deacetylase inhibitor (HDACi), MS-275, during adoptive T cell therapy. TIL isolation protocols typically d…

Discussion

Although tumor-infiltrating myeloid cells exist in varying activation and differentiation states within the tumor, several subsets have been identified including tumor-associated DCs (TADCs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs)12. Unfortunately, the overlapping expression of cell-surface markers used to identify these myeloid cell subsets makes it currently challenging to phenotypically differentiate tumor myeloid c…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Ontario Institute for Cancer Research through funding provided by the Government of Ontario, as well as the Canadian Institutes of Health Research (FRN 123516 and FRN 152954), the Canadian Cancer Society (grant 705143), and the Terry Fox Research Institute (TFRI-1073).

Materials

Alexa Fluor 700 Mouse Anti-Mouse CD45.2 BD Biosciences 560693 1:100
APC-Cy7 Mouse Anti-Mouse NK-1.1 BD Biosciences 560618 1:100
Biotin Mouse Anti-Mouse CD45.2 BD Biosciences 553771
BV421 Hamster Anti-Mouse CD11c BD Biosciences 562782 1:100
BV650 Rat Anti-Mouse F4/80 BD Biosciences 743282 1:100
BV711 Rat Anti-Mouse CD8a BD Biosciences 563046 1:100
Collagenase, Type IV, powder Gibco 17104019
DNase I Roche 10104159001
EasySep Mouse CD11b Positive Selection Kit II Stemcell technologies 18970
EasySep Mouse CD11c Positive Selection Kit II Stemcell technologies 18780
EasySep Release Mouse Biotin Positive Selection Kit Stemcell technologies 17655
FITC Rat Anti-Mouse Ly-6C BD Biosciences 553104 1:100
Fixable Viability Stain 510 BD Biosciences 564406 1:1000
Fixation/Permeabilization Solution Kit (BD Cytofix/Cytoperm) BD Biosciences 554714
PE Rat Anti-CD11b BD Biosciences 557397 1:100
PE-Cy7 Rat Anti-Mouse CD4 BD Biosciences 552775 1:100
PerCP-Cy5.5 Rat Anti-Mouse Ly-6G BD Biosciences 560602 1:100
Perm/Wash (BD Perm/Wash) BD Biosciences 554723
Purified Rat Anti-Mouse CD16/CD32 (Mouse BD Fc Block) BD Biosciences 553141
iNOS Monoclonal Antibody (CXNFT), APC Thermo Fisher 17-5920-82 1:100
Human/Mouse Arginase 1/ARG1 Fluorescein-conjugated Antibody R&D Systems IC5868F 1:100

References

  1. Paardekooper, L. M., Vos, W., vanden Bogaart, G. Oxygen in the tumor microenvironment: effects on dendritic cell function. Oncotarget. 10 (8), 883-896 (2019).
  2. Schouppe, E., De Baetselier, P., Van Ginderachter, J. A., Sarukhan, A. Instruction of myeloid cells by the tumor microenvironment: Open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations. Oncoimmunology. 1 (7), 1135-1145 (2012).
  3. Jahchan, N. S., et al. Tuning the tumor myeloid microenvironment to fight cancer. Frontiers in Immunology. 10, 1611 (2019).
  4. Srivastava, M. K., et al. Myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS One. 7 (7), 40677 (2012).
  5. Awad, R. M., De Vlaeminck, Y., Maebe, J., Goyvaerts, C., Breckpot, K. Turn back the TIMe: targeting tumor infiltrating myeloid cells to revert cancer progression. Frontiers in Immunology. 9, 1977 (2018).
  6. Strauss, L., et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Science Immunology. 5 (43), 1863 (2020).
  7. Cassetta, L., et al. Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunology, Immunotherapy. 68 (4), 687-697 (2019).
  8. Nguyen, A., et al. HDACi delivery reprograms tumor-infiltrating myeloid cells to eliminate antigen-loss variants. Cell Reports. 24 (3), 642-654 (2018).
  9. Newton, J. M., Hanoteau, A., Sikora, A. G. Enrichment and characterization of the tumor immune and non-immune microenvironments in established subcutaneous murine tumors. Journal of Visual Experiments: JoVE. (136), e57685 (2018).
  10. Engfeldt, P., Arner, P., Ostman, J. Nature of the inhibitory effect of collagenase on phosphodiesterase activity. Journal of Lipid Research. 26 (8), 977-981 (1985).
  11. Quah, B. J., Parish, C. R. The use of carboxyfluorescein diacetate succinimidyl ester (CFSE) to monitor lymphocyte proliferation. Journal of Visual Experiments: JoVE. (44), e2259 (2010).
  12. Schupp, J., et al. Targeting myeloid cells in the tumor sustaining microenvironment. Cellular Immunology. 343, 103713 (2019).
  13. Gabrilovich, D. I., Ostrand-Rosenberg, S., Bronte, V. Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology. 12 (4), 253-268 (2012).
  14. Seglen, P. O. Preparation of isolated rat liver cells. Methods in Cell Biology. 13, 29-83 (1976).
  15. Roussel, M., et al. Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow. Journal of Leukocyte Biology. 102 (2), 437-447 (2017).
This article has been published
Video Coming Soon
Keep me updated:

.

Citer Cet Article
Nguyen, A., Salem, O., Wan, Y. Functional Analysis of Tumor-Infiltrating Myeloid Cells by Flow Cytometry and Adoptive Transfer. J. Vis. Exp. (169), e61511, doi:10.3791/61511 (2021).

View Video