Summary

Cepa controlada de hidrogeles 3D bajo imágenes de microscopía en vivo

Published: December 04, 2020
doi:

Summary

El método presentado implica el estiramiento uniaxial de hidrogeles blandos 3D incrustados en caucho de silicona mientras permite la microscopía confocal viva. Se demuestra la caracterización de las cepas de hidrogel externas e internas, así como la alineación de la fibra. El dispositivo y el protocolo desarrollados pueden evaluar la respuesta de las células a diversos regímenes de deformación.

Abstract

Las fuerzas externas son un factor importante en la formación, el desarrollo y el mantenimiento de los tejidos. Los efectos de estas fuerzas se estudian a menudo utilizando métodos de estiramiento in vitro especializados. Varios sistemas disponibles utilizan camillas basadas en sustrato 2D, mientras que la accesibilidad de las técnicas 3D para tensar hidrogeles blandos, es más restringida. Aquí, describimos un método que permite el estiramiento externo de hidrogeles blandos de su circunferencia, utilizando una tira de silicona elástica como el portador de la muestra. El sistema de estiramiento utilizado en este protocolo está construido a partir de piezas impresas en 3D y electrónica de bajo costo, por lo que es simple y fácil de replicar en otros laboratorios. El proceso experimental comienza con hidrogeles de fibrina blanda polimerización (>100 μm) (módulo elástico de ~ 100 Pa) en un recorte en el centro de una tira de silicona. Las construcciones de gel de silicona se unen al dispositivo de estiramiento impreso y se colocan en la etapa de microscopio confocal. Bajo microscopía en vivo, se activa el dispositivo de estiramiento, y los geles se muestran en varias magnitudes de estiramiento. El procesamiento de imágenes se utiliza para cuantificar las deformaciones de gel resultantes, demostrando cepas relativamente homogéneas y alineación de fibras a lo largo del espesor 3D del gel (ejeZ). Las ventajas de este método incluyen la capacidad de colar hidrogeles extremadamente blandos en 3D mientras se ejecuta microscopía in situ, y la libertad de manipular la geometría y el tamaño de la muestra de acuerdo con las necesidades del usuario. Además, con la adaptación adecuada, este método se puede utilizar para estirar otros tipos de hidrogeles (por ejemplo, colágeno, poliacrilamida o polietilenglicol) y puede permitir el análisis de las células y la respuesta de los tejidos a las fuerzas externas en condiciones 3D más biomiméticas.

Introduction

La respuesta tisular a las fuerzas mecánicas es una parte integral de una amplia gama de funciones biológicas, incluyendo la expresióngénica 1,la diferenciación celular2,y la remodelación tisular3. Por otra parte, los cambios inducidos por la fuerza en la matriz extracelular (ECM) tales como alineación y densificación de la fibra pueden afectar comportamiento de la célula y la formación del tejido4,5,6. La estructura de malla fibrosa del ECM tiene propiedades mecánicas intrigantes, como elasticidad no lineal, deformación no afín y deformaciones plásticas7,8,9,10,11,12. Estas propiedades afectan la forma en que las células y su microambiente circundante responden a las fuerzas mecánicas externas13,14. Comprender cómo responden el ECM y los tejidos a las fuerzas mecánicas permitirá avanzar en el campo de la ingeniería de tejidos y en el desarrollo de modelos computacionales y teóricos más precisos.

Los métodos más comunes para estirar mecánicamente las muestras se han centrado en sustratos 2D cargados de células para explorar los efectos sobre el comportamiento celular. Estos incluyen, por ejemplo, la aplicación de deformación a sustratos de polidimetilsiloxano (PDMS) y el análisis de los ángulos de reorientación celular en relación con la dirección de estiramiento15,16,17,18,19. Sin embargo, los métodos que investigan la respuesta de los hidrogeles incrustados en células 3D al estiramiento externo, una situación que imita más de cerca el microambiente tisular, son más limitados. Los avances hacia los métodos de estiramiento 3D son de particular importancia porque las células se comportan de manera diferente en sustratos 2D en comparación con las matrices 3D20. Estos comportamientos incluyen realineamiento celular, niveles de expresión de proteínas y patrones de migración21,22,23.

Los métodos y dispositivos que permiten el estiramiento de muestras en 3D incluyen tanto los disponibles comercialmente24,25,26,27,28 como los desarrollados para la investigación de laboratorio29. Estos métodos utilizan tubos de silicona distensibles30,cámaras multi-pozo31,abrazaderas26,32,biorreactores11,33,voladizos34,35,36,eimanes 37,38. Algunas técnicas generan estiramientos que localmente deforman hidrogeles 3D, por ejemplo tirando de agujas de dos puntos individuales en el gel5,mientras que otras permiten la deformación de todo el bulto del gel16. Además, la mayoría de estos sistemas se centran en el análisis del campo de deformación en el plano X-Y, con información limitada sobre el campo de deformación en la dirección Z. Además, sólo un puñado de estos dispositivos son capaces de imágenes microscópicas in situ. El principal desafío con las imágenes de gran aumento in situ (por ejemplo, microscopio confocal) es la distancia de trabajo limitada de unos pocos cientos de micras desde la lente objetivo hasta la muestra. Los dispositivos que permiten la obtención de imágenes en vivo durante el estiramiento sacrifican la uniformidad de la tensión en el eje Zo son relativamente complejos y difíciles de reproducir en otros laboratorios39,40.

Este enfoque para estirar hidrogeles 3D permite la deformación uniaxial estática o cíclica durante la microscopía confocal viva. El dispositivo de estiramiento (conocido como ‘Smart Cyclic Uniaxial Stretcher – SCyUS’) está construido utilizando piezas impresas en 3D y hardware de bajo costo, lo que permite una fácil reproducción en otros laboratorios. Unido al dispositivo hay un caucho de silicona disponible comercialmente con un recorte geométrico en su centro. Los componentes de hidrogel se polimerizan para rellenar el recorte. Durante la polimerización, los hidrogeles biológicos, como la fibrina o el colágeno, se adhieren naturalmente a las paredes interiores del recorte. Usando el SCyUS, la tira de silicona se estira uniaxally, transfiriendo tensiones controladas al hidrogel 3D embebido41.

Este sistema permite una combinación única de características y ventajas en comparación con otros métodos existentes. En primer lugar, el sistema permite el estiramiento uniaxial de hidrogeles blandos 3D gruesos (>100 μm de espesor, rigidez de <1 kPa) desde su periferia, con deformación homogénea en Zen todo el hidrogel. Estos hidrogeles son demasiado blandos para ser agarrados y estirados por técnicas de tracción convencionales. En segundo lugar, el dispositivo de estiramiento se puede replicar fácilmente en otros laboratorios, ya que la impresión 3D está disponible para los investigadores y la electrónica utilizada en el diseño es de bajo costo. En tercer lugar, y quizás la característica más atractiva, la geometría y el tamaño del recorte en la tira de silicona se pueden manipular fácilmente, lo que permite gradientes de deformación ajustables y condiciones de contorno, así como el uso de una variedad de volúmenes de muestra, hasta unos pocos microlitros.

El actual protocolo consiste en moldear el gel de la fibrina en discos del diámetro de ~2 milímetros en tiras de goma gruesas del silicón de 0.5 milímetros procedidas por el estiramiento uniaxial bajo microscopia confocal viva. A continuación se analizan en detalle los procedimientos experimentales para medir y analizar las cepas que actúan sobre el recorte geométrico, las cepas internas desarrolladas en el hidrogel, así como la alineación de fibras resultante después de varias manipulaciones de estiramiento. Finalmente, la posibilidad de incrustar las células en el hidrogel y de exponerlas al estiramiento externo controlado se discute.

Protocol

1. Preparación de la solución (que se realizará con antelación) Etiquetado de fibrinógenoNOTA: El paso de etiquetado es necesario sólo si se desea analizar la deformación del gel de fibrina. Para experimentos celulares, es posible usar un gel sin etiquetar. Añadir 38 μL de 10 mg/mL de colorante fluorescente de éster succinimidilo (disuelto en DMSO) a 1,5 mL de solución de fibrinógeno de 15 mg/mL (relación molar de 5:1) en un tubo de centrífuga de 50 mL y colocar en una coctelera durant…

Representative Results

Los datos representativos del estiramiento estático de magnitudes crecientes aplicado a la tira de silicona portadora de un hidrogel de fibrina 3D, embebido con perlas fluorescentes de 1 μm, se muestran en la Figura 9. El análisis demuestra el efecto del estiramiento de silicona en los cambios geométricos del recorte, así como las cepas desarrolladas dentro del gel. Lasimágenes de pila Z de todo el gel se utilizan para evaluar la deformación del recorte original en f…

Discussion

El método y el protocolo presentados aquí se basan en gran medida en nuestro estudio anterior de Roitblat Riba et al.41 Incluimos aquí el diseño completo asistido por computadora (CAD), Python y los códigos de microcontrolador del dispositivo SCyUS.

Las principales ventajas del método presentado sobre los enfoques existentes incluyen la posibilidad de colar hidrogeles 3D muy suaves (módulo elástico de ~ 100 Pa) desde su circunferencia, y bajo imágenes …

Divulgations

The authors have nothing to disclose.

Acknowledgements

Algunas figuras incluidas aquí han sido adaptadas con permiso del Copyright Clearance Center: Springer Nature, Annals of Biomedical Engineering. Straining 3D hydrogels with uniform z-axis strains while enabling live microscopy imaging, A. Roitblat Riba, S. Natan, A. Kolel, H. Rushkin, O. Tchaicheeyan, A. Lesman, Copyright© (2019).

https://doi.org/10.1007/s10439-019-02426-7

Materials

Alexa Fluor 546 carboxylic acid, succinimidyl ester Invitrogen A20002
Cell Medium (DMEM High Glucose) Biological Industries 01-052-1A Add 10% FBS, 1% PNS, 1% L-Glutamine, 1% Sodium Pyruvate
Cover Slip #1.5 Bar-Naor Ltd. BN72204-30 22×40 mm
DIMETHYL SULPHOXIDE 99.5% GC DMSO Sigma-Aldrich Inc. D-5879-500 ML
Dulbecco's Phosphate-Buffered Saline Biological Industries 02-023-1A
EVICEL Fibrin Sealant (Human) Omrix Biopharmaceuticals 3902 Fibrinogen: 70 mg/mL, Thrombin: 800-1200 IU/mL
Fibrinogen Buffer N/A Recipe for 1L: 7g NaCl, 2.94g trisodium citrate dihydrate, 9g glycine, 20g arginine hydrochloride & 0.15g calcium chloride dihydrate. Bring final volume to 1L with PuW (pH 7.0-7.2)
Fluorescent micro-beads FluoSpheres (1 µm) Invitrogen F8820 Orange (540/560)
Provided as suspension (2% solids) in water plus 2 mM sodium azide
High-Temperature Silicone Rubber McMaster-Carr 3788T41 580 µm-thick
E = 1.5 Mpa
Poisson Ratio = 0.48
Tensile Strength = 4.8 MPa
Upper limit of stretch = +300% engineering strain
HiTrap desalting column 5 mL (Sephadex G-25 packed) GE Healthcare 17-1408-01
HIVAC-G High Vacuum Sealing Compound Shin-Etsu Chemical Co., Ltd. HIVAC-G 100
ImageJ FIJI software39 National Institute of Health, Bethesda, MD Version 1.8.0_112
Microcontroller (Adruino Uno + Adafruit Motorshield v2.3) Arduino/Adafruit Arduino-DK001/Adafruit-1438
MicroVL 21R Centrifuge Thermo Scientific 75002470
Parafilm Bemis PM-996
Primovert Light Microscope Carl Zeiss Suzhou Co., Ltd. 491206-0011-000
SCyUS CAD (Solidworks) Dassault Systèmes N/A
SCyUS Code37 N/A N/A
Servomotor – TowerPro SG-5010 Adafruit 155
SL 16R Centrifuge Thermo Scientific 75004030 For 50 mL tubes
Sterile 10 cm non-culture plates Corning 430167
Thrombin buffer N/A Recipe for 1L: 20g mannitol, 8.77g NaCl, 2.72g sodium acetate trihydrate, 24 mL 25% Human Serum Albumin, 5.88g calcium chloride. Bring final volume to 1L with PuW (pH 7.0)
Trypsin EDTA Solution B (0.25%), EDTA (0.05%) Biological Industries 03-052-1B
USB Cable (Type B Male to Type A Male) N/A N/A
Zeiss LSM 880 Confocal Microscope Carl Zeiss AG 2811000417
ZEN 2.3 SP1 FP3 (black) Carl Zeiss AG Release Version 14.0.0.0

References

  1. Bleuel, J., Zaucke, V., Bruggemann, G. P., Niehoff, A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS ONE. 10, 0119816 (2015).
  2. Pennisi, C. P., Olesen, C. G., de Zee, M., Rasmussen, J., Zachar, V. Uniaxial cyclic strain drives assembly and differentiation of skeletal myocytes. Tissue Engineering Part A. 17, 2543-2550 (2011).
  3. Grodzinsky, A. J., Levenston, M. E., Jin, M., Frank, E. H. Cartilage Tissue Remodeling in Response to Mechanical Forces. Annual Review of Biomedical Engineering. 2 (1), 691-713 (2000).
  4. Munster, S., et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proceedings of the National Academy of Sciences of the USA. 110, 12197-12202 (2013).
  5. Vader, D., Kabla, A., Weitz, D., Mahadevan, L. Strain-induced alignment in collagen gels. PLoS ONE. 4, 5902 (2009).
  6. Badylak, S. F. The extracellular matrix as a scaffold for tissue reconstruction. Seminars in Cell & Developmental Biology. 13 (5), 377-383 (2002).
  7. Natan, S., Koren, Y., Shelah, O., Goren, S., Lesman, A. . Molecular Biology of the Cell. 31 (14), 1474-1485 (2020).
  8. Ban, E., et al. Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces. Biophysical Journal. 114 (2), 450-461 (2018).
  9. Kim, J., et al. Stress-induced plasticity of dynamic collagen networks. Nature Communications. 8, 842 (2017).
  10. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., Janmey, P. A. Nonlinear elasticity in biological gels. Nature. 435, 191-194 (2005).
  11. Wen, Q., Basu, A., Janmey, P. A., Yodh, A. G. Non-affine deformations in polymer hydrogels. Soft Matter. 8, 8039-8049 (2012).
  12. Muiznieks, L. D., Keeley, F. W. Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective. Biochimica et Biophysica Acta. 1832, 866-875 (2012).
  13. Brown, A. E. X., Litvinov, R. I., Discher, D. E., Purohit, P. K., Weisel, J. W. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science. 325, 741-744 (2009).
  14. Carroll, S. F., Buckley, C. T., Kelly, D. J. Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells. Frontiers in Bioengineering and Biotechnology. 5, 73 (2017).
  15. Livne, A., Bouchbinder, E., Geiger, B. Cell reorientation under cyclic stretching. Nature Communications. 5, 3938 (2014).
  16. Wang, L., et al. Patterning cellular alignment through stretching hydrogels with programmable strain gradients. ACS Applied Materials & Interfaces. 7, 15088-15097 (2015).
  17. Xu, G. K., Feng, X. Q., Gao, H. Orientations of Cells on Compliant Substrates under Biaxial Stretches: A Theoretical Study. Biophysical Journal. 114 (3), 701-710 (2017).
  18. Chagnon-Lessard, S., Jean-Ruel, H., Godin, M., Pelling, A. E. Cellular orientation is guided by strain gradients. Integrative Biology (United Kingdom). 9 (7), 607-618 (2013).
  19. Lu, J., et al. Cell orientation gradients on an inverse opal substrate. ACS Applied Materials & Interfaces. 7 (19), 10091-10095 (2015).
  20. Baker, B. M., Chen, C. S. Deconstructing the third dimension – 3D culture microenvironments alter cellular cues. Journal of Cell Science. 125, 3015-3024 (2012).
  21. Bono, N., et al. Unraveling the role of mechanical stimulation on smooth muscle cells: a comparative study between 2D and 3D models. Biotechnology and Bioengineering. 113, 2254-2263 (2016).
  22. Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology. 8, 839-845 (2007).
  23. Riehl, B. D., Park, J. H., Kwon, I. K., Lim, J. Y. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Engineering Part B: Reviews. 18, 288-300 (2012).
  24. Flexcell. Linear Tissue Train Culture Plate. Flexcell. , (2019).
  25. Flexcell. Tissue Train. Flexcell. , (2019).
  26. CellScale. MCT6 Stretcher. CellScale. , (2019).
  27. STREX. STB-150. STREX. , (2019).
  28. STREX. Stretch Chambers. STREX. , (2019).
  29. Kamble, H., Barton, M. J., Jun, M., Park, S., Nguyen, N. T. Cell stretching devices as research tools: engineering and biological considerations. Lab on a Chip. 16, 3193-3203 (2016).
  30. Weidenhamer, N. K., Tranquillo, R. T. Influence of cyclic mechanical stretch and tissue constraints on cellular and collagen alignment in fibroblast-derived cell sheets. Tissue Engineering Part C: Methods. 19, 386-395 (2013).
  31. Yung, Y. C., Vandenburgh, H., Mooney, D. J. Cellular strain assessment tool (CSAT): precision-controlled cyclic uniaxial tensile loading. Journal of Biomechanics. 42, 178-182 (2009).
  32. Chen, K., et al. Role of boundary conditions in determining cell alignment in response to stretch. Proceedings of the National Academy of Sciences of the USA. 115, 986-991 (2018).
  33. Heher, P., et al. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomaterialia. 24, 251-265 (2015).
  34. Foolen, J., Deshpande, V. S., Kanters, F. M. W., Baaijens, F. P. T. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials. 33, 7508-7518 (2012).
  35. Walker, M., Godin, M., Pelling, A. E. A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix. Biomedical Microdevices. 20, 43 (2018).
  36. Zhao, R. G., Boudou, T., Wang, W. G., Chen, C. S., Reich, D. H. Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. Advanced Materials. 25, 1699-1705 (2013).
  37. Li, Y. H., et al. Magnetically actuated cell-laden micro-scale hydrogels for probing strain-induced cell responses in three dimensions. NPG Asia Materials. 8, 238 (2016).
  38. Li, Y. H., et al. An approach to quantifying 3D responses of cells to extreme strain. Scientific Reports. 6, 19550 (2016).
  39. Humphrey, J. D., et al. A theoretically-motivated biaxial tissue culture system with intravital microscopy. Biomechanics and Modeling in Mechanobiology. 7, 323-334 (2008).
  40. Niklason, L. E., et al. Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proceedings of the National Academy of Sciences of the USA. 107, 3335-3339 (2010).
  41. Roitblat Riba, A., et al. Straining 3D hydrogels with uniform z-axis strains while enabling live microscopy imaging. Annals of Biomedical Engineering. , (2019).
  42. Gomez, D., Natan, S., Shokef, Y., Lesman, A. Mechanical interaction between cells facilitates molecular transport. Advanced Biosystems. 3 (12), 1900192 (2019).
  43. Schindelin, J., et al. Fiji: an open- source platform for biological-image analysis. Nature Methods. 9, 676-682 (2012).
  44. EPFL Switzerland. OrientationJ plug in. EPFL Switzerland. , (2019).
  45. Goren, S., Koren, Y., Xu, X., Lesman, A. Elastic anisotropy governs the decay of cell-induced displacements. Biophysical Journal. 118 (5), 1152-1164 (2019).
  46. Notbohm, J., Lesman, A., Tirrell, D. A., Ravichandran, G. Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers. Integrative Biology. 7 (10), 1186-1195 (2015).
  47. Lesman, A., Notbohm, J., Tirrell, D. A., Ravichandran, G. Contractile forces regulate cell division in three-dimensional environments. Journal of Cell Biology. 205 (2), 155-162 (2014).
  48. Cha, C. Y., et al. Tailoring Hydrogel Adhesion to Polydimethylsiloxane Substrates Using Polysaccharide Glue. Angewandte Chemie International Edition. 52, 6949-6952 (2019).
  49. Wirthl, D., et al. Instant tough bonding of hydrogels for soft machines and electronics. Science Advances. 3, (2017).
  50. Juarez-Moreno, J. A., Avila-Ortega, A., Oliva, A. I., Aviles, F., Cauich-Rodriguez, J. V. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Applied Surface Science. 349, 763-773 (2015).
  51. Kim, H. T., Jeong, O. C. PDMS surface modification using atmospheric pressure plasma. Microelectronic Engineering. 88, 2281-2285 (2011).
  52. Prasad, B. R., et al. Controlling cellular activity by manipulating silicone surface roughness. Colloids and Surfaces. 78, 237-242 (2010).
check_url/fr/61671?article_type=t

Play Video

Citer Cet Article
Kolel, A., Roitblat Riba, A., Natan, S., Tchaicheeyan, O., Saias, E., Lesman, A. Controlled Strain of 3D Hydrogels under Live Microscopy Imaging. J. Vis. Exp. (166), e61671, doi:10.3791/61671 (2020).

View Video