Summary

Visualizzazione di incontri replisali con una lesione bloccante con tag antigene

Published: July 27, 2021
doi:

Summary

Mentre le collisioni della forcella di replicazione con gli addotti del DNA possono indurre rotture a doppio filamento, meno si sa sull’interazione tra replisomi e lesioni bloccanti. Abbiamo impiegato il saggio di legatura di prossimità per visualizzare questi incontri e per caratterizzare le conseguenze per la composizione delle risposte.

Abstract

Sono presenti informazioni considerevoli sulla risposta cellulare alle rotture a doppio filamento (DSB), indotte da nucleasi, radiazioni e altri rompitori di DNA. In parte, ciò riflette la disponibilità di metodi per l’identificazione dei siti di rottura e la caratterizzazione dei fattori reclutati per i DSB in tali sequenze. Tuttavia, i DSB appaiono anche come intermedi durante l’elaborazione di addotti del DNA formati da composti che non causano direttamente rotture e non reagiscono in siti di sequenza specifici. Di conseguenza, per la maggior parte di questi agenti, le tecnologie che consentono l’analisi delle interazioni di legame con i fattori di risposta e le proteine di riparazione sono sconosciute. Ad esempio, i legami incrociati tra filamenti di DNA (ICL) possono provocare rotture in seguito a incontri di fork di replicazione. Sebbene formata da farmaci ampiamente usati come chemioterapici del cancro, non esiste una metodologia per monitorare le loro interazioni con le proteine di replicazione.

Qui, descriviamo la nostra strategia per seguire la risposta cellulare alle collisioni della forcella con questi addotti impegnativi. Abbiamo collegato un antigene steroideo allo psoralene, che forma ICL dipendenti dalla fotoattivazione nei nuclei delle cellule viventi. Le ICL sono state visualizzate mediante immunofluorescenza contro il tag dell’antigene. Il tag può anche essere un partner nel Proximity Ligation Assay (PLA) che riporta la stretta associazione di due antigeni. Il PLA è stato sfruttato per distinguere le proteine che erano strettamente associate alle ICL marcate da quelle che non lo erano. È stato possibile definire le proteine replisome che sono state trattenute dopo incontri con ICL e identificare altre che sono state perse. Questo approccio è applicabile a qualsiasi struttura o addotto del DNA che può essere rilevato immunologicamente.

Introduction

La risposta cellulare alle rotture del doppio filamento è ben documentata a causa di una successione di metodi sempre più potenti per dirigere le rotture verso siti genomici specifici 1,2,3. La certezza della posizione consente una caratterizzazione univoca delle proteine e di altri fattori che si accumulano nel sito e partecipano alla risposta al danno del DNA (DDR), guidando così i percorsi di giunzione finale non omologa (NHEJ) e ricombinazione omologa (HR) che riparano le rotture. Naturalmente, molte rotture sono introdotte da agenti come radiazioni e specie chimiche che non attaccano sequenze specifiche4. Tuttavia, per questi sono disponibili procedure che possono convertire le estremità in strutture suscettibili di tagging e localizzazione 5,6. Le rotture sono introdotte anche da processi biologici, come il riarrangiamento delle immunoglobuline, e la tecnologia recente consente la loro localizzazione, così come7. La relazione tra i fattori di risposta e tali siti può quindi essere determinata.

Le rotture appaiono anche come conseguenza indiretta di addotti formati da composti che non sono interruttori intrinseci ma interrompono le transazioni del DNA come la trascrizione e la replicazione. Possono formarsi come caratteristica della risposta cellulare a queste ostruzioni, forse durante la riparazione o perché provocano una struttura vulnerabile all’attacco della nucleasi. Tipicamente, la relazione fisica tra l’addotto, la rottura e l’associazione con i fattori di risposta è inferenziale. Ad esempio, le ICL sono formate da chemioterapici come il cisplatino e la mitomicina C8 e come prodotto di reazione dei siti abasici9. Le ICL sono ben note come potenti blocchi delle forcelle di replicazione10, bloccando così le forcelle che possono essere scisse dalle nucleasi11. Il legame covalente tra i filamenti è spesso alleviato da vie che hanno rotture obbligate come intermedi12,13, che richiedono una ricombinazione omologa per ricostruire la forcella di replicazione14. Nella maggior parte degli esperimenti il ricercatore segue la risposta dei fattori di interesse alle rotture che si formano a valle della collisione di una forcella di replicazione con una ICL. Tuttavia, poiché non esiste una tecnologia per la localizzazione di una lesione provocatoria, la vicinanza del rispondente e delle sue parti componenti alla ICL può essere solo assunta.

Abbiamo sviluppato una strategia per consentire l’analisi delle associazioni proteiche con addotti covalenti non specifici di sequenza, illustrati qui dalle ICL. Nel nostro sistema questi sono introdotti dallo psoralene, un prodotto naturale fotoattivo utilizzato da migliaia di anni come terapeutico per i disturbi della pelle15. Il nostro approccio si basa su due importanti caratteristiche degli psoraleni. Il primo è la loro alta frequenza di formazione di reticoli, che può superare il 90% degli addotti, in contrasto con il meno del 10% formato da composti popolari come il cisplatino o la mitomicina C 8,16. Il secondo è l’accessibilità del composto alla coniugazione senza perdita di capacità di reticolazione. Abbiamo collegato covalentemente il trimetil psoralene alla digoxigenina (Dig), un immunotag di lunga data. Ciò consente la rilevazione degli addotti psoraleni nel DNA genomico mediante immunocolorazione del tag Dig e visualizzazione mediante immunofluorescenza convenzionale17.

Questo reagente è stato applicato, nel nostro lavoro precedente, all’analisi degli incontri della forcella di replicazione con ICL utilizzando un saggio basato su fibre di DNA16. In quel lavoro abbiamo scoperto che la replica poteva continuare oltre una ICL intatta. Questo dipendeva dalla chinasi ATR, che è attivata dallo stress di replicazione. Il riavvio della replica era inaspettato data la struttura dell’elicasi replicativa CMG. Questo consiste nell’etero-esamero MCM (M) che forma un anello gapped sfalsato attorno al filamento modello per la sintesi del filamento principale che è bloccato dalle proteine del complesso GINS (G, costituito da PSF1, 2, 3 e SLD5) e CDC45 (C) 18. La proposta che la replica potesse ricominciare sul lato del distale ICL sul lato della collisione del risposo sosteneva un cambiamento nella struttura del rispososo. Per rispondere alla questione di quali componenti fossero presenti nella risposta al momento dell’incontro con una Lci, abbiamo sviluppato l’approccio qui descritto. Abbiamo sfruttato il tag Dig come partner in Proximity Ligation Assays (PLA)19 per interrogare la stretta associazione della ICL con le proteine del replisome20.

Protocol

1. Preparazione delle cellule Giorno 1Pretrattare i piatti di coltura con fondo di vetro da 35 mm con una soluzione adesiva cellulare. Cellule a piastre nei piatti pretrattati un giorno prima del trattamento. La cellula dovrebbe dividersi attivamente e confluente al 50-70% il giorno dell’esperimento.NOTA: Le cellule HeLa sono state utilizzate in questo esperimento con Dulbecco Modified Eagle Medium DMEM, integrato con siero bovino fetale al 10%, 1x penicillina / streptomicina. Non vi è a…

Representative Results

PLA di Dig-TMP con proteine replisomeLa struttura del Dig-TMP è illustrata nella Figura 1. I dettagli della sintesi, in cui il trimetil psoralene è stato coniugato attraverso un glicole linker alla digoxigenina, sono stati discussi in precedenza17,21. L’incubazione delle cellule con il composto seguita dall’esposizione alla luce a 365 nm (UVA) fotoattiva il composto e guida la reazione di reticolazione. Poco pi…

Discussion

Sebbene il PLA sia una tecnica molto potente, ci sono problemi tecnici che devono essere risolti per ottenere risultati chiari e riproducibili. Gli anticorpi devono essere di elevata affinità e specificità. Inoltre, è importante ridurre il più possibile i segnali di fondo non specifici. Abbiamo scoperto che le membrane e i detriti cellulari contribuiscono allo sfondo e li abbiamo rimossi il più possibile. I lavaggi con detergente contenente tamponi prima del fissaggio e il lavaggio con metanolo dopo il fissaggio aiu…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Questa ricerca è stata supportata, in parte, dall’Intramural Research Program del NIH, National Institute on Aging, Stati Uniti (Z01-AG000746-08). J.H. è supportato dalla National Natural Science Foundations of China (21708007 e 31871365).

Materials

Alexa Fluor 568, Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody Invitrogen A-10011 1 in 1000
35 mm plates with glass 1.5 coverslip MatTek P35-1.5-14-C Glass Bottom Microwell Dishes 35mm Petri Dish Microwell
Alexa Fluor 488,Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody Invitrogen A-10001 1 in 1000
Bovine serum albumin (BSA) SeraCare 1900-0012 Blocking solution, reagents need to be stored at 4 °C
CDC45 antibody (rabbit) Abcam ab126762 1 in 200
Cell adhesive Life Science 354240 for cell-TAK solution
Confocal microscope Nikkon Nikon TE2000 spinning disk microscope equiped with Volocity software
Digoxigenin (Dig) antibody (mouse) Abcam ab420 1 in 200
Dig-TMP synthesized in the Seidman Lab
Duolink Amplification reagents (5×) Sigma-Aldrich DUO82010 reagents need to be stored at -20 °C
Duolink in situ detection reagents Sigma-Aldrich DUO92007 reagents need to be stored at -20 °C
Duolink in situ oligonucleotide PLA probe MINUS Sigma-Aldrich DUO92004 anti-mouse MINUS, reagents need to be stored at 4 °C
Duolink in situ oligonucleotide PLA probe PLUS Sigma-Aldrich DUO92002 anti-rabbit PLUS, reagents need to be stored at 4 °C
Duolink in situ wash buffer A Sigma-Aldrich DUO82046 Duolink Wash Buffers, reagents need to be stored at 4 °C
Duolink in situ wash buffer B Sigma-Aldrich DUO82048 Duolink Wash Buffers, reagents need to be stored at 4 °C
epifluorescent microscope Zeiss Axiovert 200M microscope Equipped with the Axio Vision software packages (Zeiss, Germany)
Formaldehyde 16% Fisher Scientific PI28906 for fix solution
Goat serum Thermo 31873 Blocking solution, reagents need to be stored at 4 °C
Image analysis software open source Cell profiler works for analysis of single plane images
Image analysis software-license required Bitplane Imaris Cell Biology module needed. Can quantify PLA dots/nuclei in image stacks (3D) and do 3D reconstructions
Ligase (1 unit/μl) Sigma-Aldrich DUO82029 reagents need to be stored at -20 °C
Ligation reagent (5×) Sigma-Aldrich DUO82009 reagents need to be stored at -20 °C
MCM2 antibody (rabbit) Abcam ab4461 1 in 200
MCM5 antibody (rabbit monoclonal) Abcam Ab75975 1 in 1000
Methanol Lab ALLEY A2076 pre-cold at -20°C before use
phosphoMCM2S108 antibody (rabbit) Abcam ab109271 1 in 200
Polymerase (10 unit/μl) Sigma-Aldrich DUO82030 reagents need to be stored at -20 °C
Prolong gold mounting media with DAPI ThermoFisher Scientific P36935
PSF1 antibody (rabbit) Abcam ab181112 1 in 200
RNAse A 100 mg/ml Qiagen 19101 reagents need to be stored at 4 °C
Statistical analysis and data visualization software open source R studio ggplot2 package for generation of dot plot and box plots
Statistical analysis and data visualization software-license required Systat Software Sigmaplot V13
TMP (trioxalen) Sigma-Aldrich T6137_1G
TritonX-100 Sigma-Aldrich T8787_250ML
Tween 20 Sigma-Aldrich P9416_100ML
UV box Southern New England Ultraviolet Discontinued. See Opsytec UV test chamber as a possible replacement
UV test Chamber Opsytec UV TEST CHAMBER BS-04
VE-821 Selleckchem S8007 final concentrtion is 1µM

References

  1. Rouet, P., Smih, F., Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and Cellular Biology. 14 (12), 8096-8106 (1994).
  2. Wright, D. A., et al. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nature Protocols. 1 (3), 1637-1652 (2006).
  3. Brinkman, E. K., et al. Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks. Molecular Cell. 70 (5), 801-813 (2018).
  4. Vitor, A. C., Huertas, P., Legube, G., de Almeida, S. F. Studying DNA double-strand break repair: An ever-growing toolbox. Frontiers in Molecular Bioscience. 7, 24 (2020).
  5. Galbiati, A., Beausejour, C., d’Adda di, F. F. A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues. Aging Cell. 16 (2), 422-427 (2017).
  6. Vitelli, V., et al. Recent Advancements in DNA damage-transcription crosstalk and high-resolution mapping of DNA breaks. Annual Review of Genomics and Human Genetics. 18, 87-113 (2017).
  7. Canela, A., et al. DNA breaks and end resection measured genome-wide by end sequencing. Molecular Cell. 63 (5), 898-911 (2016).
  8. Muniandy, P. A., Liu, J., Majumdar, A., Liu, S. T., Seidman, M. M. DNA interstrand crosslink repair in mammalian cells: step by step. Critical Reviews in Biochemistry and Molecular Biology. 45 (1), 23-49 (2010).
  9. Nejad, M. I., et al. Interstrand DNA cross-links derived from reaction of a 2-aminopurine residue with an abasic site. ACS Chemical Biology. 14 (7), 1481-1489 (2019).
  10. Kottemann, M. C., Smogorzewska, A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature. 493 (7432), 356-363 (2013).
  11. Kaushal, S., Freudenreich, C. H. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer. 58 (5), 270-283 (2019).
  12. Knipscheer, P., Raschle, M., Scharer, O. D., Walter, J. C. Replication-coupled DNA interstrand cross-link repair in Xenopus egg extracts. Methods in Molecular Biology. 920, 221-243 (2012).
  13. Klein, D. D., et al. XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Molecular Cell. 54 (3), 460-471 (2014).
  14. Long, D. T., Raschle, M., Joukov, V., Walter, J. C. Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science. 333 (6038), 84-87 (2011).
  15. Benedetto, A. V. The psoralens. An historical perspective. Cutis. 20 (4), 469-471 (1977).
  16. Huang, J., et al. The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. Molecular Cell. 52 (3), 434-446 (2013).
  17. Thazhathveetil, A. K., Liu, S. T., Indig, F. E., Seidman, M. M. Psoralen conjugates for visualization of genomic interstrand cross-links localized by laser photoactivation. Bioconjugate Chemistry. 18 (2), 431-437 (2007).
  18. O’Donnell, M. E., Li, H. The ring-shaped hexameric helicases that function at DNA replication forks. Nature Structural & Molecular Biology. 25 (2), 122-130 (2018).
  19. Koos, B., et al. Analysis of protein interactions in situ by proximity ligation assays. Current Topics in Microbiology and Immunology. 377, 111-126 (2014).
  20. Huang, J., et al. Remodeling of Interstrand Crosslink Proximal Replisomes Is Dependent on ATR, FANCM, and FANCD2. Cell Reports. 27 (6), 1794-1808 (2019).
  21. Huang, J., et al. Single molecule analysis of laser localized psoralen adducts. Journal of Visualized Experiments. (122), e55541 (2017).
  22. Saldivar, J. C., Cortez, D., Cimprich, K. A. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nature Reviews Molecular Cell Biology. 18 (10), 622-636 (2017).
  23. Cortez, D., Glick, G., Elledge, S. J. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proceedings of the National Academy of Sciences. 101 (27), 10078-10083 (2004).
  24. Ersoy, I., Bunyak, F., Chagin, V., Cardoso, M. C., Palaniappan, K. Segmentation and classification of cell cycle phases in fluorescence imaging. Medical Image Computing and Computer-Assisted. 12, 617-624 (2009).
  25. Zhao, J., Dynlacht, B., Imai, T., Hori, T., Harlow, E. Expression of NPAT, a novel substrate of cyclin E-CDK2, promotes S-phase entry. Genes & Development. 12 (4), 456-461 (1998).
check_url/fr/61689?article_type=t

Play Video

Citer Cet Article
Zhang, J., Huang, J., Majumdar, I., James, R. C., Gichimu, J., Paramasivam, M., Pokharel, D., Gali, H., Bellani, M. A., Seidman, M. M. Visualization of Replisome Encounters with an Antigen Tagged Blocking Lesion. J. Vis. Exp. (173), e61689, doi:10.3791/61689 (2021).

View Video