Summary

Size Determination and Phenotypic Analysis of Urinary Extracellular Vesicles using Flow Cytometry

Published: April 23, 2021
doi:

Summary

This protocol describes a method for the isolation of urinary extracellular vesicles, uEVs, from healthy human donors and their phenotypic characterization by the size and surface marker expression using flow cytometry.

Abstract

Extracellular vesicles, EVs, are a heterogeneous complex of lipidic membranes, secreted by any cell type, in any fluid such as urine. EVs can be of different sizes ranging from 40-100 nm in diameter such as in exosomes to 100-1000 nm in microvesicles. They can also contain different molecules that can be used as biomarkers for the prognosis and diagnosis of many diseases. Many techniques have been developed to characterize these vesicles. One of these is flow cytometry. However, there are no existing reports to show how to quantify the concentration of EVs and differentiate them by size, along with biomarker detection. This work aims to describe a procedure for the isolation, quantification, and phenotypification of urinary extracellular vesicles, uEVs, using a conventional cytometer for the analysis without any modification to its configuration. The method's limitations include staining a maximum of four different biomarkers per sample. The method is also limited by the amount of EVs available in the sample. Despite these limitations, with this protocol and its subsequent analysis, we can obtain more information on the enrichment of EVs markers and the abundance of these vesicles present in urine samples, in diseases involving kidney and brain damage.

Introduction

In mammals, blood is filtered by passing through the kidneys 250 – 300 times; during this time, urine is formed. Production of this biofluid is the result of a series of processes, including glomerular filtration, tubular reabsorption, and secretion. Metabolic waste products and electrolytes are the main components of urine. Also, other byproducts such as peptides, functional proteins, and extracellular vesicles (EVs) are excreted1,2,3,4,5,6. Initially, urinary extracellular vesicles (uEVs) were identified in urine samples from patients suffering from water-balance disorders. These patients showed the presence of molecules such as aquaporin-2 (AQP2), which was then used as a biomarker for this disease7. Several subsequent studies focused on identifying the cellular origin of uEVs, describing that these structures can be secreted by kidney cells (glomerulus, podocytes, etc.) and other cell types of endothelial or leukocytic lineages. Moreover, the number and molecule-enrichment in uEVs can correlate with the status of many diseases and disorders8,9,10,11,12,13,14.

Altogether, EVs make up a highly heterogeneous family of particles enclosed by lipid bilayers and released by cells through passive or active mechanisms into different fluids. Depending on their origin, EVs can be classified as endosome originated exosomes or plasma membrane-derived microvesicles/microparticles. However, this classification criterion can only be applied when the biogenesis of the particles is directly observed. Therefore, other non-trivial criteria, including physical, biochemical, and cellular origin, have been endorsed by several researchers in the field15,16,17. Depending on the nature of the isolate analyzed, different analytical techniques were suggested for EVs characterization. For example, based on the enrichment of big (≥100 nm) or small (≤100 nm) EVs, quantification via flow cytometry or nanoparticle tracking is suggested, respectively18.

Nowadays, the use of EVs as biomarkers for many diseases has become relevant, so the search for different sources are been investigated. One of the most promising sources is the urine as it can be obtained in an easy and non-invasive manner. Therefore, this protocol describes a procedure for the isolation of uEVs by differential centrifugation, processing with fluorochrome-conjugated antibodies, and downstream analysis using a conventional 2-lasers/4-colors cytometer.

Protocol

The human urine samples were obtained from healthy volunteers who had signed donor-informed consent. These procedures were also approved by the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Research Ethics Committee. 1. Isolation of urinary extracellular vesicles NOTE: The isolation protocol of uEVs is modified from ref.19. Figure 1 depicts the representation of the protocol to …

Representative Results

There are several checkpoints through the protocol, and before the staining of uEVs. Therefore, it is essential to first verify the amount of protein present in the extract of uEVs. All the research groups that work with extracellular vesicles quantify the protein, as indicated in step 2.1. Supplementary Figure 2 shows a representative 96 well plate containing uEVs fraction in wells 4E, 5E, and 6E. Wells 1A, 2A, and 3A consist of blanks, but if there are no uEVs purified, the wells will take similar colo…

Discussion

Nowadays, the use of extracellular vesicles as biomarkers for several diseases has augmented, especially for those that can be isolated from non-invasive sources such as urine5,21,22,23,24. It has been proved that the isolation of uEVs is a vital resource to know the status of a healthy individual, and the diagnosis/prognosis of patients suffering several dise…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by grants from CONACyT (A3-S-36875) and UNAM-DGAPA-PAPIIT Program (IN213020 and IA202318). NH-I was supported by fellowship 587790 from CONACyT.

The authors want to thank Leopoldo Flores-Romo†, Vianney Ortiz-Navarrete, Antony Boucard Jr and Diana Gómez-Martin for their valuable advice for the realization of this protocol, and to all the healthy individuals for their urine samples.

Materials

APC anti human CD156c (ADAM10) antibody BioLegend 352706 Add 5 µL to the 20 µL of uEVs in PBS
APC anti human TSPAN33 (BAAM) antibody BioLegend 395406 Add 5 µL to the 20 µL of uEVs in PBS
Avanti centrifuge with JA-25.5O fixed angle rotor Beckamn Coulter J-26S XPI
BD Accuri C6 Flow Cytometer BD Biosciences
β-mercaptoethanol SIGMA-Aldrich M3148
Benchtop centrifuge with A-4-44 rotor Eppendorf 5804
BLUEstain 2 protein ladder GOLDBIO P008
CD9 (C-4) mouse monoclonal antibody Santa Cruz Biotechnology sc-13118
CD63 (MX-49.129.5) mouse monoclonal antibody Santa Cruz Biotechnology sc-5275
Cell Trace CFSE cell proliferation kit for flow cytometry Thermo Scientific C34554
Chemidoc XRS+ system BIORAD 5837
FITC anti human CD9 antibody BioLegend 312104 Add 5 µL to the 20 µL of uEVs in PBS
FITC anti human CD37 antibody BioLegend 356304 Add 5 µL to the 20 µL of uEVs in PBS
Fluorescent yellow particles Spherotech FP-0252-2
Fluorescent yellow particles Spherotech FP-0552-2
Fluorescent yellow particles Spherotech FP-1552-2
FlowJo Software Becton, Dickinson and Company
Goat anti-mouse immunoglobulins/HRP Dako P0447
Halt protease inhibitor cocktail Thermo Scientific 78429
Immun-Blot PVDF membrane 0.22µm BIORAD 1620177
Megamix-Plus FSC beads COSMO BIO CO.LTD 7802
NuPAGE LDS sample buffer 4X Thermo Scientific NP0007
Optima ultracentrifuge with rotor 90Ti fixed angle 355530 Beckamn Coulter XPN100
Page Blue protein staining solution Thermo Scientific 24620
PE anti human CD53 antibody BioLegend 325406 Add 5 µL to the 20 µL of uEVs in PBS
Pierce BCA Protein assay kit Thermo Scientific 23227
Pierce RIPA buffer Thermo Scientific 89900
Polycarbonate thick wall centrifuge tubes Beckamn Coulter 355630
Spherotech 8-Peak validation beads (FL1-FL3) BD Accuri 653144
Spherotech 6-Peak validation beads (FL4) BD Accuri 653145
Sucrose SIGMA-Aldrich 59378
Triethanolamine SIGMA-Aldrich 90279

References

  1. Decramer, S., et al. Urine in clinical proteomics. Molecular & Cellular Proteomics. 7 (10), 1850-1862 (2008).
  2. Nawaz, M., et al. The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nature Reviews Urology. 11 (12), 688-701 (2014).
  3. Pisitkun, T., Johnstone, R., Knepper, M. A. Discovery of urinary biomarkers. Molecular & Cellular Proteomics. 5 (10), 1760-1771 (2006).
  4. Urinology Think Tank Writing Group. Urine: Waste product or biologically active tissue. Neurourology and Urodynamics. 37 (3), 1162-1168 (2018).
  5. Wang, S., Kojima, K., Mobley, J. A., West, A. B. Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine. 45, 351-361 (2019).
  6. Merchant, M. L., Rood, I. M., Deegens, J. K. J., Klein, J. B. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. International Urology and Nephrology. 13 (12), 731-749 (2017).
  7. Alvarez, M. L., Khosroheidari, M., Kanchi Ravi, R., DiStefano, J. K. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International. 82 (9), 1024-1032 (2012).
  8. Jing, H., et al. The role of extracellular vesicles in renal fibrosis. Cell Death and Disease. 10 (5), 367 (2019).
  9. Liu, X., et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney International. 97 (6), 1181-1195 (2020).
  10. Quaglia, M., et al. Extracellular Vesicles as Mediators of Cellular Crosstalk Between Immune System and Kidney Graft. Frontiers in Immunology. 11, 74 (2020).
  11. Simpson, R. J., Lim, J. W., Moritz, R. L., Mathivanan, S. Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics. 6 (3), 267-283 (2009).
  12. Street, J. M., Koritzinsky, E. H., Glispie, D. M., Star, R. A., Yuen, P. S. Urine Exosomes: An Emerging Trove of Biomarkers. Advances in Clinical Chemistry. 78, 103-122 (2017).
  13. Thongboonkerd, V. Roles for Exosome in Various Kidney Diseases and Disorders. Frontiers in Pharmacology. 10, 1655 (2019).
  14. Watanabe, Y., et al. Molecular Network Analysis of the Urinary Proteome of Alzheimer’s Disease Patients. Dementia and Geriatric Cognitive Disorders Extra. 9 (1), 53-65 (2019).
  15. Jadli, A. S., Ballasy, N., Edalat, P., Patel, V. B. Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Molecular and Cellular Biochemistry. 467 (1-2), 77-94 (2020).
  16. Svenningsen, P., Sabaratnam, R., Jensen, B. L. Urinary extracellular vesicles: Origin, role as intercellular messengers and biomarkers; efficient sorting and potential treatment options. Acta Physiologica. 228 (1), 13346 (2020).
  17. Witwer, K. W., Thery, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. Journal of Extracellular Vesicles. 8 (1), 1648167 (2019).
  18. Thery, C., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 7 (1), 1535750 (2018).
  19. Perez-Hernandez, J., et al. Increased Urinary Exosomal MicroRNAs in Patients with Systemic Lupus Erythematosus. PLoS One. 10 (9), 0138618 (2015).
  20. Freyssinet, J. M., Toti, F. Membrane microparticle determination: at least seeing what’s being sized. Journal of Thrombosis and Haemostasis. 8 (2), 311-314 (2010).
  21. D’Anca, M., et al. Exosome Determinants of Physiological Aging and Age-Related Neurodegenerative Diseases. Frontiers in Aging Neuroscience. 11, 232 (2019).
  22. Lawson, C., Vicencio, J. M., Yellon, D. M., Davidson, S. M. Microvesicles and exosomes: new players in metabolic and cardiovascular disease. Journal of Endocrinology. 228 (2), 57-71 (2016).
  23. Lee, S., Mankhong, S., Kang, J. H. Extracellular Vesicle as a Source of Alzheimer’s Biomarkers: Opportunities and Challenges. International Journal of Molecular Sciences. 20 (7), (2019).
  24. Mori, M. A., Ludwig, R. G., Garcia-Martin, R., Brandao, B. B., Kahn, C. R. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metabolism. 30 (4), 656-673 (2019).
  25. Hoorn, E. J., et al. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton). 10 (3), 283-290 (2005).
  26. Ranghino, A., Dimuccio, V., Papadimitriou, E., Bussolati, B. Extracellular vesicles in the urine: markers and mediators of tissue damage and regeneration. Clinical Kidney Journal. 8 (1), 23-30 (2015).
  27. Zhang, W., et al. Extracellular vesicles in diagnosis and therapy of kidney diseases. American Journal of Physiology-Renal Physiology. 311 (5), 844-851 (2016).
  28. Fernandez-Llama, P., et al. Tamm-Horsfall protein and urinary exosome isolation. Kidney International. 77 (8), 736-742 (2010).
  29. Royo, F., et al. Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. Journal of Extracellular Vesicles. 5, 29497 (2016).
  30. Rider, M. A., Hurwitz, S. N., Meckes, D. G. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Scientific Reports. 6, 23978 (2016).
  31. Lv, C. Y., et al. A PEG-based method for the isolation of urinary exosomes and its application in renal fibrosis diagnostics using cargo miR-29c and miR-21 analysis. International Urology and Nephrology. 50 (5), 973-982 (2018).
  32. Alvarez, M. L., Khosroheidari, M., Kanchi Ravi, R., DiStefano, J. K. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International. 82 (9), 1024-1032 (2012).
  33. Wang, D., Sun, W. Urinary extracellular microvesicles: isolation methods and prospects for urinary proteome. Proteomics. 14 (16), 1922-1932 (2014).
  34. Pospichalova, V., et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. Journal of Extracellular Vesicles. 4, 25530 (2015).
  35. van der Pol, E., et al. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. Journal of Thrombosis and Haemostasis. 16 (6), 1236-1245 (2018).
  36. Huyan, T., Du, Y., Huang, Q., Huang, Q., Li, Q. Uptake Characterization of Tumor Cell-derived Exosomes by Natural Killer Cells. Iranian Journal of Public Health. 47 (6), 803-813 (2018).
  37. Puzar Dominkus, P., et al. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1860 (6), 1350-1361 (2018).
  38. Morales-Kastresana, A., et al. Labeling Extracellular Vesicles for Nanoscale Flow Cytometry. Scientific Reports. 7 (1), 1878 (2017).
  39. de Rond, L., et al. Comparison of Generic Fluorescent Markers for Detection of Extracellular Vesicles by Flow Cytometry. Clinical Chemistry. 64 (4), 680-689 (2018).
This article has been published
Video Coming Soon
Keep me updated:

.

Citer Cet Article
Navarro-Hernandez, I. C., Acevedo-Ochoa, E., Juárez-Vega, G., Meza-Sánchez, D. E., Hernández-Hernández, J. M., Maravillas-Montero, J. L. Size Determination and Phenotypic Analysis of Urinary Extracellular Vesicles using Flow Cytometry. J. Vis. Exp. (170), e61695, doi:10.3791/61695 (2021).

View Video