Summary

获得高质量的骨骼肌扩展视野超声图像,以测量肌肉束长度

Published: December 14, 2020
doi:

Summary

本研究描述了如何使用扩展视场超声(EFOV-US)方法获得高质量的肌肉骨骼图像,以进行肌肉束长度测量。我们将这种方法应用于具有束状物的肌肉,这些肌肉延伸到普通传统超声(T-US)探针的视野之外。

Abstract

肌肉束长度通常在体内使用传统超声测量,是定义肌肉力产生能力的重要参数。然而,超过 90% 的上肢肌肉和 85% 的下肢肌有比普通传统超声( T – US )探头的视野更长的最佳分束长度。一种较新、不太常用的称为扩展视场超声(EFOV-US)的方法,可以直接测量比单个T-US图像的视场更长的薄片。这种方法可以自动将来自动态扫描的T-US图像序列拟合在一起,已被证明对于在体内获得肌肉束长度是有效和可靠的。尽管有许多具有长筋膜的骨骼肌,并且EFOV-US方法对这种筋膜进行测量的有效性,但很少有已发表的研究使用这种方法。在这项研究中,我们展示了如何实施EFOV-US方法来获得高质量的肌肉骨骼图像,以及如何量化这些图像的分筋膜长度。我们预计,该演示将鼓励使用EFOV-US方法来增加健康和受损人群中的肌肉池,我们有体内肌肉束长度数据。

Introduction

筋膜长度是骨骼肌结构的一个重要参数,总体上表明肌肉产生力的能力12。具体而言,肌肉的筋膜长度可以深入了解肌肉可以产生活动力的绝对长度范围34。例如,给定除筋膜长度外,所有等轴测力生成参数(即平均肌节长度、下角、生理横截面积、收缩状态等)具有相同值的两块肌有较长筋膜的肌肉将在较长的长度上产生其峰值力,并且将产生比具有较短束的肌肉更宽的长度范围的力 3.肌肉筋膜长度的量化对于了解健康的肌肉功能和肌肉的力产生能力的变化非常重要,这些变化可能是由于肌肉使用改变(例如,固定56,运动干预789,高跟鞋佩戴10)或肌肉环境的变化(例如,肌腱转移手术11,肢体分心12)而发生的).肌肉束长度的测量最初是通过离体尸体实验获得的,该实验允许直接测量解剖的筋膜13141516。这些离体实验提供的宝贵信息导致人们有兴趣实施体内方法171819以解决尸体无法回答的问题;体内方法允许在天然状态以及不同的关节姿势,不同的肌肉收缩状态,不同的加载或卸载状态以及具有不同条件(即健康/受伤,年轻/年老等)的人群中量化肌肉参数。最常见的是,超声波是用于获得体内肌肉束长度的方法181920;它比其他成像技术(如扩散张量成像(DTI))更快,更便宜,更容易实现1821

扩展视野超声(EFOV-US)已被证明是测量体内肌肉束长度的有效且可靠的方法。虽然通常采用传统超声(T-US),但其视场受超声换能器阵列长度的限制(通常在4至6厘米之间,尽管有些探头延伸至10 cm101820。为了克服这一限制,Weng等人开发了一种EFOV-US技术,该技术可以从动态的长距离扫描中自动获取复合的二维”全景”图像(长达60厘米)22。图像是通过实时拟合一系列传统的B型超声图像而创建的,因为换能器动态扫描感兴趣的物体。由于连续的 T-US 图像具有较大的重叠区域,因此一个图像与下一个图像之间的微小差异可用于计算探头运动,而无需使用外部运动传感器。一旦计算出两个连续图像之间的探头运动,”当前”图像将连续与前面的图像合并。EFOV-US方法允许直接测量长而弯曲的肌肉束,并且已被证明在肌肉,试验和超声医师中是可靠的232425 并且对平坦和弯曲的表面都有效2326

实施超声波来测量体内肌肉束长度并非易事。与其他涉及更多自动化方案(即MRI,CT)的成像技术不同,超声依赖于超声医师的技能和解剖学知识2728。有人担心探头与分册平面的不对中可能导致分册措施出现重大误差。一项研究表明,使用超声和 DTI MRI 测量的分束长度测量几乎没有差异(平均< 3 mm),但也表明测量精度较低(差的标准偏差约为 12 mm)29。尽管如此,已经表明,新手超声医师在经验丰富的超声医师的实践和指导下,可以使用EFOV-US23获得有效的测量值。因此,应努力证明适当的协议,以减少人为错误并提高使用EFOV-US获得的测量的准确性。最终,开发和共享适当的方案可能会扩大实验者和实验室的数量,这些实验者和实验室可以从文献中重现分册长度数据,或者在尚未在体内研究的肌肉中获得新的数据。

在该协议中,我们展示了如何实施EFOV-US方法以获得可用于量化肌肉束长度的高质量肌肉骨骼图像。具体而言,我们解决了(a)收集单个上肢和单个下肢肌肉的EFOV-US图像(b)实时确定EFOV-US图像的”质量”,以及(c)离线量化肌肉结构参数。我们提供此详细指南,以鼓励采用EFOV-US方法在由于长筋膜而未在体内研究的肌肉中获取肌肉束长度数据。

Protocol

西北大学的机构审查委员会(IRB)批准了这项研究的程序。所有参加这项工作的参与者在开始下面详述的方案之前都给予了知情同意。注意:本研究中使用的特定超声系统具有EFOV-US功能,并且被采用,因为我们能够审查科学文献中有关该算法的详细信息和有效性评估22,26;还存在多个具有EFOV-US的其他系统18,20…

Representative Results

实施扩展视野超声(EFOV-US)以从4名健康志愿者的肱二头肌长头和胫骨前部获得图像(表1)。 图1 显示了在这个代表性成像会议中两块肌肉的EFOV-US图像,并突出显示了每个图像的重要方面,例如肌肉腱鞘炎,中心肌腱,筋膜路径等。成像过程结束后,对每个个体中每块肌肉的3张定性”良好”图像(图2)进行了分析。实施ImageJ以测量每张图像…

Discussion

协议中的关键步骤。

获得高质量的EFOV-US图像有几个关键组成部分,可以产生有效和可靠的分册长度测量。首先,如方法1.1.2所示,超声医师必须花时间熟悉被成像肌肉的解剖结构以及周围的肌肉,骨骼和其他软组织结构。这将提高超声医师对正确肌肉进行成像的能力,并确定多个图像是否捕获了相同的肌肉平面。其次,超声医师在收集数据以供发表之前,应练习…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们要感谢Vikram Darbhe和Patrick Franks的实验指导。这项工作得到了美国国家科学基金会研究生研究奖学金计划的支持。DGE-1324585以及NIH R01D084009和F31AR076920。本材料中表达的任何意见,发现和结论或建议均为作者的观点,并不一定反映美国国家科学基金会或NIH的观点。

Materials

14L5 linear transducers Siemens 10789396
Acuson S2000 Ultrasound System Siemens 10032746
Adjustable chair (Biodex System) Biodex Medical Systems System Pro 4
Skin Marker Medium Tip SportSafe n/a Multi-color 4 Pack recommended
Ultrasound Gel – Standard 8 Ounce Non-Sterile Fragrance Free Glacial Tint MediChoice, Owens &Minor M500812

References

  1. Gans, C., Bock, W. J. The functional significance of muscle architecture: a theoretical analysis. Advances in Anatomy, Embryology and Cell Biology. 38, 115-142 (1965).
  2. Gans, C. Fiber architecture and muscle function. Exercise and Sports Sciences Reviews. 10, 160-207 (1982).
  3. Lieber, R. L., Fridén, J. Functional and clinical significance of skeletal muscle architecture. Muscle & Nerve. 23 (11), 1647-1666 (2000).
  4. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering. 17 (4), 359-411 (1989).
  5. Williams, P. E., Goldspink, G. The effect of immobilization on the longitudinal growth of striated muscle fibres. Journal of Anatomy. 116 (1), 45 (1973).
  6. Williams, P. E., Goldspink, G. Changes in sarcomere length and physiological properties in immobilized muscle. Journal of Anatomy. 127 (3), 459-468 (1978).
  7. Blazevich, A. J., Cannavan, D., Coleman, D. R., Horne, S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. Journal of Applied Physiology. 103 (5), 1565-1575 (2007).
  8. Seymore, K. D., Domire, Z. J., DeVita, P., Rider, P. M., Kulas, A. S. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. European Journal of Applied Physiology. 117 (5), 943-953 (2017).
  9. Franchi, M. V., et al. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiologica. 210 (3), 642-654 (2014).
  10. Csapo, R., Maganaris, C. N., Seynnes, O. R., Narici, M. V. On muscle, tendon and high heels. The Journal of Experimental Biology. 213 (15), 2582-2588 (2010).
  11. Takahashi, M., Ward, S. R., Marchuk, L. L., Frank, C. B., Lieber, R. L. Asynchronous muscle and tendon adaptation after surgical tensioning procedures. Journal of Bone and Joint Surgery. 92 (3), 664-674 (2010).
  12. Boakes, J. L., Foran, J., Ward, S. R., Lieber, R. L. Case Report: Muscle Adaptation by Serial Sarcomere Addition 1 Year after Femoral Lengthening. Clinical Orthopaedics and Related Research. 456, 250-253 (2007).
  13. Cutts, A., Alexander, R. M., Ker, R. F. Ratios of cross-sectional areas of muscles and their tendons in a healthy human forearm. Journal of Anatomy. 176, 133-137 (1991).
  14. Lieber, R. L., Friden, J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 23, 1647-1666 (2000).
  15. Lieber, R. L., Fazeli, B. M., Botte, M. J. Architecture of Selected Wrist Flexor and Extensor Muscles. Journal of Hand Surgery-American. 15 (2), 244-250 (1990).
  16. Brand, P. W., Beach, R. B., Thompson, D. E. Relative tension and potential excursion of muscles in the forearm and hand. Journal of Hand Surgery. 6 (3), (1981).
  17. Fukunaga, T., Kawakami, Y., Kuno, S., Funato, K., Fukashiro, S. Muscle architecture and function in humans. Journal of Biomechanics. 30 (5), 457-463 (1997).
  18. Kwah, L. K., Pinto, R. Z., Diong, J., Herbert, R. D. Reliability and validity of ultrasound measurements of muscle fascicle length and pennation in humans: a systematic review. Journal of Applied Physiology. 114, 761-769 (2013).
  19. Lieber, R. L., Ward, S. R. Skeletal muscle design to meet functional demands. Philosophical Transactions of the Royal Society B: Biological Sciences. 366 (1570), 1466-1476 (2011).
  20. Franchi, M. V., et al. Muscle architecture assessment: strengths, shortcomings and new frontiers of in vivo imaging techniques. Ultrasound in Medicine & Biology. 44 (12), 2492-2504 (2018).
  21. Cronin, N. J., Lichtwark, G. The use of ultrasound to study muscle-tendon function in human posture and locomotion. Gait & posture. 37 (3), 305-312 (2013).
  22. Weng, L., et al. US extended-field-of-view imaging technology. Radiology. 203 (3), 877-880 (1997).
  23. Adkins, A. N., Franks, P. F., Murray, W. M. Demonstration of extended field-of-view ultrasound’s potential to increase the pool of muscles for which in vivo fascicle length is measurable. Journal of Biomechanics. 63, 179-185 (2017).
  24. Noorkoiv, M., Stavnsbo, A., Aagaard, P., Blazevich, A. J. In vivo assessment of muscle fascicle length by extended field-of-view ultrasonography. Journal of Applied Physiology. , (2010).
  25. Nelson, C. M., Dewald, J. P. A., Murray, W. M. In vivo measurements of biceps brachii and triceps brachii fascicle lengths using extended field-of-view ultrasound. Journal of Biomechanics. 49, 1948-1952 (2016).
  26. Fornage, B. D., Atkinson, E. N., Nock, L. F., Jones, P. H. US with extended field of view: Phantom-tested accuracy of distance measurements. Radiology. 214, 579-584 (2000).
  27. Bénard, M. R., Becher, J. G., Harlaar, J., Huijing, P. A., Jaspers, R. T. Anatomical information is needed in ultrasound imaging of muscle to avoid potentially substantial errors in measurement of muscle geometry. Muscle & Nerve. 39 (5), 652-665 (2009).
  28. Pinto, A., et al. Sources of error in emergency ultrasonography. Critical Ultrasound Journal. 5 (1), 1 (2013).
  29. Bolsterlee, B., Veeger, H. E. J., van der Helm, F. C. T., Gandevia, S. C., Herbert, R. D. Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images. Journal of Biomechanics. 48 (6), 1133-1140 (2015).
  30. VanHooren, B., Teratsias, P., Hodson-Tole, E. F. Ultrasound imaging to assess skeletal muscle architecture during movements: a systematic review of methods, reliability, and challenges. Journal of Applied Physiology. 128 (4), 978-999 (2020).
  31. Pimenta, R., Blazavich, A. J., Frietas, S. R. Biceps Femoris Long-Head Architecture Assessed Using Different Sonographic Techniques. Medicine & Science in Sports & Exercise. 50 (12), 2584-2594 (2018).
  32. Adkins, A. N., Franks, P. W., Murray, W. M. Demonstration of extended field-of-view ultrasound’s potential to increase the pool of muscles for which in vivo fascicle length is measurable. Journal of Biomechanics. 63, 179-185 (2017).
  33. Norkin, C. C., White, J. D. . Measurement Of Joint Motion: A Guide To Goniometry. 5th edn. , (2016).
  34. Wu, G., et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. Journal of Biomechanics. 35 (4), 543-548 (2002).
  35. Wu, G., et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics. 38 (5), 981-992 (2005).
  36. Franchi, M. V., Fitze, D. P., Raiteri, B. J., Hahn, D., Spörri, J. Ultrasound-derived biceps femoris long-head fascicle length: extrapolation pitfalls. Medicine and Science in Sports and Exercise. 52 (1), 233-243 (2020).
  37. Freitas, S. R., Marmeleira, J., Valamatos, M. J., Blazevich, A., Mil-Homens, P. Ultrasonographic Measurement of the Biceps Femoris Long-Head Muscle Architecture. Journal of Ultrasound in Medicine. 37 (4), 977-986 (2018).
  38. Nelson, C. M., Murray, W. M., Dewald, J. P. A. Motor Impairment-Related Alterations in Biceps and Triceps Brachii Fascicle Lengths in Chronic Hemiparetic Stroke. Neurorehabilitation and Neural Repair. 32 (9), 799-809 (2018).
  39. Alonso-Fernandez, D., Docampo-Blanco, P., Martinez-Fernandez, J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scandinavian Journal of Medicine & Science in Sports. 28 (1), 88-94 (2018).
  40. Herbert, R. D., et al. In vivo passive mechanical behaviour of muscle fascicles and tendons in human gastrocnemius muscle-tendon units. The Journal of Physiology. 589 (21), 5257-5267 (2011).
  41. Jakubowski, K. L., Terman, A., Santana, R. V. C., Lee, S. S. M. Passive material properties of stroke-impaired plantarflexor and dorsiflexor muscles. Clinical Biomechanics. 49, 48-55 (2017).
  42. Ward, S. R., Eng, C. M., Smallwood, L. H., Lieber, R. L. Are Current Measurements of Lower Extremity Muscle Architecture Accurate. Clinical Orthopaedics and Related Research. 467 (4), 1074-1082 (2009).
  43. Pillen, S., van Alfen, N. Skeletal muscle ultrasound. Neurological Research. 33 (10), 1016-1024 (2011).
  44. Scott, J. M., et al. Panoramic ultrasound: a novel and valid tool for monitoring change in muscle mass. Journal of Cachexia, Sarcopenia and Muscle. 8 (3), 475-481 (2017).
  45. Silbernagel, K. G., Shelley, K., Powell, S., Varrecchia, S. Extended field of view ultrasound imaging to evaluate Achilles tendon length and thickness: a reliability and validity study. Muscles, Ligaments and Tendons Journal. 6 (1), 104 (2016).
  46. Lichtwark, G. A., Bougoulias, K., Wilson, A. M. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. Journal of Biomechanics. 40 (1), 157-164 (2007).
  47. Farris, D. J., Sawicki, G. S. Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait. Proceedings of the National Academy of Sciences. 109 (3), 977-982 (2012).
  48. Bolsterlee, B., Gandevia, S. C., Herbert, R. D. Effect of Transducer Orientation on Errors in Ultrasound Image-Based Measurements of Human Medial Gastrocnemius Muscle Fascicle Length and Pennation. PLoS ONE. 11 (6), (2016).
  49. Adkins, A. N., Dewald, J. P. A., Garmirian, L., Nelson, C. M., et al. Serial sarcomere number is substantially decreased within the paretic biceps brachii in chronic hemiparetic stroke. bioRxiv. , (2020).
  50. Pang, B. S., Ying, M. Sonographic measurement of Achilles tendons in asymptomatic subjects. Journal of Ultrasound in Medicine. 25 (10), 1291-1296 (2006).
  51. Ryan, E. D., et al. Test-retest reliability and the minimal detectable change for achilles tendon length: a panoramic ultrasound assessment. Ultrasound in Medicine & Biology. 39 (12), 2488-2491 (2013).
  52. Noorkoiv, M., Nosaka, K., Blazevich, A. J. Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. European Journal of Applied Physiology. 109 (4), 631-639 (2010).
  53. Franchi, M. V., Fitze, D. P., Hanimann, J., Sarto, F., Spörri, J. Panoramic ultrasound vs. MRI for the assessment of hamstrings cross-sectional area and volume in a large athletic cohort. Scientific Reports. 10 (1), 14144 (2020).
  54. Yerli, H., Eksioglu, S. Y. Extended Field-of-View Sonography: Evaluation of the Superficial Lesions. Canadian Association of Radiologists Journal. 60 (1), 35-39 (2009).
  55. Kim, S. H., Choi, B. I., Kim, K. W., Lee, K. H., Han, J. K. Extended Field-of-View Sonography. Journal of Ultrasound in Medicine. 22 (4), 385-394 (2003).
check_url/fr/61765?article_type=t

Play Video

Citer Cet Article
Adkins, A. N., Murray, W. M. Obtaining Quality Extended Field-of-View Ultrasound Images of Skeletal Muscle to Measure Muscle Fascicle Length. J. Vis. Exp. (166), e61765, doi:10.3791/61765 (2020).

View Video