Summary

评估流和拉伸下生物材料的炎症和再生能力的多奎生物反应器

Published: December 10, 2020
doi:

Summary

本协议的目标是在管状电喷脚手架中执行人类巨噬细胞和肌纤维细胞的动态共生,以研究物质驱动的组织再生,使用生物反应器,使剪切应力和循环拉伸脱钩。

Abstract

从转化的角度来看,使用可再吸附生物材料直接在体内诱导再生是一种有吸引力的策略。这种材料在植入时会引起炎症反应,这是随后材料吸收和新组织再生的驱动因素。这一战略,也被称为原位组织工程,旨在获得心血管置换,如组织工程血管移植。炎症和再生过程都由脚手架上的局部生物力学线索(即拉伸和剪切应力)决定。在这里,我们详细描述了定制开发的生物反应器的使用,这种反应器能够使管状脚手架上的拉伸和剪切应力脱钩。这允许系统和标准化地评估管状脚手架在控制良好的机械负载的影响下的炎症和再生能力,我们利用人类巨噬细胞和肌纤维细胞进行动态共培养实验来证明这一点。详细讨论了该方法的关键实际步骤:生物反应器的建造和建立、脚手架和细胞播种的制备、拉伸和剪切流的应用和维护以及样品采集分析。

Introduction

心血管组织工程(TE)正在作为替代治疗选择,目前使用的永久心血管假肢(如血管移植,心脏瓣膜置换),这是不理想的大组患者1,2,3,4。许多抢手的应用包括组织工程血管移植 (TEVG)5,6和心脏瓣膜 (TEHV)7,8.最常见的是,心血管TE方法利用可重新吸收的生物材料(无论是天然的还是合成的),作为新组织形成的有启发性的支架。新组织的形成可以完全在体外设计,通过用细胞播种脚手架,并在植入前在生物反应器中培养(体外TE)9、10、11或直接就地植入,在原位植入合成脚手架时无需预先培养,以诱导体内(原位TE)12、13、14等新组织的形成。对于体外和原位心血管TE方法,成功的功能再生主要取决于宿主对植入结构的免疫反应和适当的生物力学负荷。

生物力学负荷对心血管TE的重要性是众所周知的在心血管植入物中,填充脚手架的细胞暴露于循环拉伸和剪切压力,这些压力是血友病环境引起的。许多研究已经报告了(循环)拉伸对基质成分形成的刺激作用,如胶原蛋白16,17,18,19,糖氨酸(GAGs)20,和弹性蛋白21,22,由各种细胞类型。例如,黄等人证明,双轴拉伸利用血管生物反应器23,提高了胶原蛋白和弹性蛋白在体外特威格斯中的沉积和组织。虽然重点通常在于拉伸作为主要负载,但这些研究通常使用流驱动的生物反应器,其中样本也暴露在剪切流中。虽然对剪切应力对3D组织形成和炎症的孤立影响知之甚少,但提供了一些数据。例如,Hinderer等人和Eoh等人证明,剪切流除了3D脚手架微结构外,对于人类血管平滑肌肉细胞在体外模型系统24、25中形成成熟的弹性蛋白非常重要。总之,这些发现说明了环伸和剪切应激对心血管TE的相关性。

TE植入物成败的另一个重要决定因素是宿主对植入移植物26的免疫反应。这对于物质驱动的原位TE策略尤其重要,它实际上依赖于对脚手架的急性炎症反应来启动细胞流入和内源性组织形成和重塑的后续过程巨噬菌体是功能组织再生的关键启动器,28、29、30等多项研究表明。类似于伤口愈合,组织的再生是由巨噬细胞和组织产生细胞之间的寄生虫信号,如成纤维细胞和肌纤维细胞31,32,33。除了协调新的组织沉积外,巨噬细胞还参与外来脚手架材料34、35的主动吸收。因此,体外对生物材料的宏年反应已被确定为植入物36、37、38体内成功的预测参数。

植入式脚手架的宏观反应取决于脚手架的设计特征,如材料组成和微观结构35,39,40。除了脚手架属性外,对脚手架及其与肌纤维细胞的相声的宏法响应也受到血液动力载荷的影响。例如,环状拉伸被证明是巨噬细胞表型41,42,43,44和细胞因子43,44,45,46在3D电子喷支架分泌物的重要调节剂。Battiston等人利用巨噬细胞和血管平滑肌肉细胞的共培养系统证明,巨噬细胞的存在导致弹性蛋白和GAG水平增加,中度循环拉伸水平(1.07-1.10)刺激胶原蛋白I和弹性蛋白47的沉积。在以往的著作中,我们已经证明剪切应力是单核细胞招募到3D电喷支架48,49,剪切应力和循环拉伸影响人类单核细胞和间质频闪细胞50之间的寄生虫信号的重要决定因素。Fahy等人证明,剪切流增加了人类单核细胞51的亲炎细胞因子的分泌。

综合起来,上述证据表明,对血液机载荷的充分理解和控制对心血管TE至关重要,因此必须考虑炎症反应来实现这一点。许多生物反应器以前曾被描述为体外52,53,54,55,56,57,58或前体内59,60,61心血管组织培养。然而,所有这些系统都旨在尽可能模仿生理血液机载量条件。虽然这在体外创建心血管组织或维持前体内培养物方面具有很高的价值,但此类系统不允许系统地研究个体线索的个体影响。这是因为在这些生物反应器中应用循环拉伸和剪切应力是由相同的加压流驱动的,而加压流与它们有着内在的联系。虽然用于精确多提示机械操作的微系统已用于 2D 基材62或 3D 水凝胶设置63,64,但此类设置不允许纳入弹性 3D 生物材料脚手架。

在这里,我们介绍了管状生物反应器系统的应用,该系统独特地实现了剪切应力和循环拉伸的脱钩,并有助于机械地研究其个体和组合效应。该系统允许测试各种组织工程血管移植物(例如,合成或自然起源,不同的微结构,各种孔隙)。为了有效地将剪切应力和拉伸的应用脱钩,生物反应器使用的关键概念是(1) 使用独特的泵系统分离剪切应力和拉伸控制,(2) 以计算驱动尺寸的”从内到外”方式刺激脚手架。通过使用流泵将流量应用于管状脚手架的外表面,而脚手架的周长则通过使用单独的应变泵来扩展安装脚手架的硅胶管。硅胶管和包含构造的玻璃管的尺寸是使用计算流体动力学模拟仔细选择和验证的,以确保脚手架上的剪切应力(由于流量)和环状拉伸(由于管膨胀)不会显著影响彼此。这种从内到外的设计有几个实用的理由。如果拉伸由发光流体压力(类似于生理负荷)施加,则固有要求样品设计无泄漏。此外,拉伸样品所需的压力将完全由样品刚度决定,样本刚度可能因样品而异,并且随着时间的推移,很难控制样品的拉伸。这种生物反应器将组织工程移植物安装在硅胶管周围,并允许在移植物的外壁上应用壁切变应力 (WSS),并从内部给移植物加压。这样,样品之间和样品内部的同等装载条件可以保证,而且,样品允许泄漏,就像多孔血管支架19一样。这种从内到外的生物反应器是专门用来系统研究剪切和/或拉伸的影响,而不是在体外进行原生血管的工程,而传统的血管生物反应器设置更适合于此。有关生物反应器设计图纸 的图 1A-B 及其相应的 表 1, 了解生物反应器主要组件背后的功能描述和原理。

生物反应器的使用是根据我们小组最近的一系列研究证明的,其中我们调查了剪切应力和循环拉伸对可再吸附电喷支架中炎症和组织形成的个体和组合影响,用于原位心血管组织19、43、44。为此,我们使用单体或共培养中的人类巨噬细胞和肌纤维细胞来模拟原位再生级联的各个阶段。我们已经证明,人类巨噬细胞的细胞因子分泌明显受到循环拉伸和剪切应力的影响,通过parcrine信号和直接接触19、43、44,通过这些脚手架中的人类肌纤维细胞影响基质沉积和组织。值得注意的是,这些研究表明,在剪切应力和拉伸的结合应用的情况下,对组织形成和炎症的影响要么由两个负载之一主导,要么有两个负载的协同效应。这些发现说明了将两个负载脱钩以更好地了解机械环境对 TE 过程的贡献的相关性。这一理解可用于系统地优化相关血液动力负荷系统中的脚手架设计参数。此外,来自这些控制良好的环境的机械数据可以作为正在开发的数字模型的输入,以预测原位组织重塑的过程,正如最近为TEVG65或TEHV66报告的那样,以进一步提高预测能力。

Protocol

在本协议中描述的研究中,从周围血液狂热的外周涂层中分离出的原发性人类巨噬细胞和在冠状旁路手术后从鼻静脉中分离出来的人类肌纤维细胞已经使用了44种。这些狂热的外套是从健康、匿名的志愿者那里获得的,他们提供了书面知情同意,并得到了桑昆研究机构医学伦理委员会的批准。使用人类静脉皂细胞(HVSCs)是根据荷兰医学会联合会(FMWV)制定的”人类组织适当二次?…

Representative Results

该生物反应器的开发是为了研究剪切应激和循环拉伸对血管组织生长和3D生物材料脚手架改造的个体和组合效应。生物反应器的设计允许在各种装载条件下培养多达8个血管结构(图1A)。血管结构位于流动培养室(图1B),其中周长伸展和WSS都可以独立控制。流文化室的顶部隔间持有一个流直发器,以相对较短的沉降长度(图1C)?…

Discussion

此处描述的生物反应器允许系统地评估剪切应力和循环拉伸对管状可重新吸附脚手架的炎症和组织再生的个体贡献和综合影响。这种方法还使血管构造能够进行各种各样的分析,在具有代表性的结果部分就说明了这一点。这些结果表明,不同的血液机载系统(即剪切和拉伸的不同组合)对 TEVG 结构的生长和改造都有独特的影响。这些见解通过这个体外平台收集,有助于优化新开发的原地 TEVG 的脚?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究得到了ZonMw的资助,作为LSH 2Treat计划(436001003)和荷兰肾脏基金会(14a2d507)的一部分。N.A.K.感谢欧洲研究理事会(851960)的支持。我们感谢荷兰科学研究组织(024.003.013)资助的引力计划”材料驱动再生”。

Materials

advanced Dulbecco’s modified EagleMedium (aDMEM) Gibco 12491-015 cell culture medium for fibroblasts
Aqua Stabil Julabo 8940012 prevent microorganism growth in bioreactor-hydraulic reservoir
Bovine fibrinogen Sigma F8630 to prepare fibrinogen gel to seed the cells on the electrospun scaffold
Bovine thrombin Sigma T4648 to prepare fibrinogen gel to seed the cells on the electrospun scaffold
Centrifuge Eppendorf 5804 to spin down cells and conditioned medium
Clamp scissor – "kelly forceps" Almedic P-422 clamp the silicone tubing and apply pre-stretch to the scaffold so the scaffold can be sutured into the engraved groove (autoclave at step 1, step 7)
CO2 cell culture incubators Sanyo MCO-170AIC-PE for cell culturing
Compressed air reservoir Festo CRVZS-5 smoothing air pressure fluctuations and create time delays for pressure build-up
Custom Matlab script to calculate the maximum stretches Matlab R2017. The Mathworks, Natick, MA calculate the minimum and maximum outer diameter of the electrospun scaffold
Data acquisition board National Instruments BNC-2090 data processing in between amplifier system and computer
Ethanol VWR VWRK4096-9005 to keep sterile working conditions
Fetal bovine calf serum (FBS) Greiner 758087 cell culture medium supplement; serum-supplement
Flow culture chamber compartments, consisting of a pressure conduit with engraved grooves and small holes to apply pressure on silicone tubing, a screw thread, nose cone, top compartment with flow inlet and bottom compartment flow outlet, adapter bushing Custom made, Department of Biomedical Engineering, Eindhoven University of Technology n.a. flow culture chamber compartments (autoclave at step 1, step 7)
Glass Pasteur pipet Assistant HE40567002 apply vacuum on electrospun scaffold (autoclave at step 1)
Glass tubes of the flow culture chamber Custon made, Equipment & Prototype Center, Eindhoven University of Technology n.a. part of the flow culture chamber (clean and store in 70% ethanol, at step 1 and 7)
GlutaMax Gibco 35050061 cell culture medium amino acid supplement, minimizes ammonia build-up
High speed camera MotionScope M-5 to monitor the stretch during culture; time-lapse photographs of the scaffolds are captured at a frequency of 30 Hz for 6 sec (i.e. 3 stretch cycles)
High speed camera lens – Micro-NIKKOR 55mm f/2.8 – lens Nikon JAA616AB to monitor the stretch during culture; time-lapse photographs of the scaffolds are captured at a frequency of 30 Hz for 6 sec (i.e. 3 stretch cycles)
Hose clip ibidi GmbH 10821 block medium flow (autoclave at step 1, step 7)
Hydraulic reservoir with 8 screw threads for 8 flow culture chambers Custom made, Department of Biomedical Engineering, Eindhoven University of Technology n.a. to apply pressure to the silicone mounted constructs (clean outside with a paper tissue with 70% ethanol, rinse reservoir with 70% ethanol followed by demi water, at step 1 and 7)
Ibidi pump system (8x) including ibidi pump, PumpControl software, fluidic unit, perfusion set (medium tubing), air pressure tubing, drying bottles with orange silica beads ibidi GmbH 10902 set up used to control the flow in the flow culture chambers. Note 1: the ibidi pumps were modified by the manufacturer to enable 200 mbar capacity. Note 2: can be replaced by pump system of other manufacturer, as long as same flow regimes can be applied.
Knives (no.10 sterile blades, individual foil pack) and scalpel handle (stainless steel, individually wrapped) Swann Morton 0301; 0933 to cut the silicone tubing in the correct size for the scaffold and to cut the suture material
LabVIEW Software National Instruments version 2018 to control the stretch applied to the scaffolds
Laminar flow biosafety cabinet with UV light Labconco 302310001 to ensure sterile working conditions. The UV is used to decontaminate everything that cannot be autoclaved, or touched after autoclaving
Large and small petri dishes Greiner 664-160 for sterile working conditions
L-ascorbic acid 2-phosphate (vitamin C) Sigma A8960 cell culture medium supplement, important for collagen production
LED light cold source KL2500 Zeiss Schott AG to aid in visualization for the time lapse of the scaffolds during monitoring of the stretch
Luer (female and male) locks and connectors, white luer caps ibidi GmbH various, see (https://ibidi.com/26-flow-accessories) to close or connect parts of the bioreactor and the ibidi pump (autoclave at step 1, step 7)
Measuring amplifier (PICAS) PEEKEL instruments B.V. n.a. to amplify the signal from the pressure sensor and feedback to LabView
Medium reservoir (large syringes 60 mL) and reservoir holders ibidi GmbH 10974 medium reservoir (autoclave at step 1, step 7)
Medium tubing with 4.25 mm outer diameter and 1 mm inner diameter Rubber BV 1805 to allow for a larger flow rate, the ibidi medium tubing with larger diameter is used. Note: the part of medium tubing guided through the fluidic unit valves are the same as the default ibidi medium tubing
Motion Studio Software Idtvision 2.15.00 to make the high speed time lapse images for stretch monitoring
Needle (19G) BD Microlance 301700 together with thin flexible tubing used to fill the hydraulic reservoir with ultrapure water without adding air bubbles
Needle driver Adson 2429218 to handle the needle of the nylon suture through the silicone tube (autoclave at step 1, step 7)
Paper tissues Kleenex 38044001 for cleaning of the equipment with 70% ethanol
Parafilm Sigma P7793-1EA quick fix if leakage occurs
Penicillin/streptomycin (P/S) Lonza DE17-602E cell culture medium supplement; prevent bacterial contamination
Phosphate Buffered Saline (PBS) Sigma P4417-100TAB for storage and washing steps (autoclave at step 1)
Plastic containers (60 mL) with red screw caps Greiner 206202 to prepare the fibrinogen solution
Pneumatic cylinder Festo AEVC-20-10-I-P to actuate the Teflon bellow (clean with a paper tissue with 70% ethanol at step 1 and 7)
Polycaprolactone bisurea (PCL-BU) tubular scaffolds (3 mm inner diameter, 200 µm wall thickness, 20 mm length) SyMO-Chem, Eindhoven, The Netherlands n.a. produced using electrospinning from 15% (w/w) chloroform (Sigma; 372978) polymer solutions. See Van Haaften et al Tissue Engineering Part C (2018) for more details
Pressure conduit without holes (for static control) Custom made, Department of Biomedical Engineering, Eindhoven University of Technology n.a. to mount electrospun tubes on silicon tubing (autoclave at step 1, step 7)
Pressure sensor and transducer BD TC-XX and P 10 EZ the air pressure going to the pneumatic actuated pump is raised until it reaches the set pressure
Proportional air pressure control valve and pressure sensor Festo MPPES-3-1/8-2-010, 159596 provides compressed air to the pneumatic actuated pump
Roswell Park Memorial Institute 1640 (RPMI-1640) Gibco A1049101 cell culture medium for monocyte/macrophage
Safe lock Eppendorf tubes (1.5 mL) Eppendorf 30120086 multiple applications (autoclave at step 1)
Sodium dodecyl sulfate solution 20% Sigma 5030 Used to clean materials, at a concentration of 0.1%.  
Silicone O-rings Technirub 1250S to prevent leakage (autoclave at step 1, step 7)
Silicone tubing (2.8 mm outer diameter, 400 um wall thickness) Rubber BV 1805 to mount the electrospun tubes on the pressure conduits (autoclave at step 1)
Sterile tube (15 mL) Falcon 352095 multiple applications
Suture, 5-0 prolene with pre-attached taper point needle Ethicon, Johnson&Johnson EH7404H Prolene suture wire 5-0 (75cm length, TF taper point needle, 1/2 circle, 13 mm needle length)
Syringe (24 mL) B. Braun Melsungen AG 2057932 to add the ultrapure water or medium to the hydraulic reservoir or flow culture chamber
Syringe filter (0.2 µm) Satorius 17597-K to filter the fibrinogen solution
T150 cell culture flask with filter cap Nunc 178983 to degas culture medium
T75 Cell culture flask with filter cap Nunc 156499 to culture static control samples
Teflon bellow Custom made, Department of Biomedical Engineering, Eindhoven University of Technology n.a. to load the hydraulic reservoir (clean outside with a paper tissue with 70% ethanol at step 1 and 7)
Tray (stainless steel) PolarWare 15-248 for easy transport of the fluidic culture chambers and the bioreactor from incubator to laminar flow cabinet and back (clean with a paper tissue with 70% ethanol before and after use)
Tweezers Wironit 4910 sterile handling of individual parts (autoclave at step 1 and 7)
Ultrapure water Stakpure Omniapure UV 18200002 to correct for medium evaporation, mixed with aqua stabil mixed and used as hydraulic fluid. (autoclave ultrapure water at step 1)
UV light Philips TUV 30W/G30 T8 for decontamination of grafts and bioreactor parts before seeding

References

  1. Chlupác, J., Filová, E., Bacáková, L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiological Research. 58, 119-139 (2009).
  2. Huygens, S. A., et al. Bioprosthetic aortic valve replacement in elderly patients: Meta-analysis and microsimulation. The Journal of Thoracic and Cardiovascular Surgery. 157 (6), 2189-2197 (2019).
  3. Huygens, S. A., et al. Contemporary outcomes after surgical aortic valve replacement with bioprostheses and allografts: a systematic review and meta-analysis. European Journal of Cardio-Thoracic Surgery. 50 (4), 605-616 (2016).
  4. Loh, S. A., et al. Mid- and long-term results of the treatment of infrainguinal arterial occlusive disease with precuffed expanded polytetrafluoroethylene grafts compared with vein grafts. Annals of Vascular Surgery. 27 (2), 208-217 (2013).
  5. Tara, S., et al. Vessel bioengineering. Circulation Journal. 78 (1), 12-19 (2014).
  6. Huang, A. H., Niklason, L. E. Engineering of arteries in vitro. Cellular and Molecular Life Sciences. 71 (11), 2103-2118 (2014).
  7. Bouten, C. V. C., Smits, A. I. P. M., Baaijens, F. P. T. Can we grow valves inside the heart? Perspective on material-based in situ heart valve tissue engineering. Frontiers in Cardiovascular Medicine. 5, 54 (2018).
  8. Fioretta, E. S., et al. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nature Reviews Cardiology. , (2020).
  9. Kirkton, R. D., et al. Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Science Translational Medicine. 11 (485), (2019).
  10. Gutowski, P., et al. Arterial reconstruction with human bioengineered acellular blood vessels in patients with peripheral arterial disease. Journal of Vascular Surgery. , (2020).
  11. Syedain, Z., et al. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nature Communications. 7 (12951), 12951 (2016).
  12. Sugiura, T., et al. Tissue-engineered vascular grafts in children with congenital heart disease: intermediate term follow-up. Seminars in Thoracic and Cardiovascular Surgery. 30 (2), 175-179 (2018).
  13. Kluin, J., et al. In situ heart valve tissue engineering using a bioresorbable elastomeric implant – material design to 12 months follow-up in sheep. Biomaterials. 125, 101-117 (2017).
  14. Fioretta, E. S., et al. Differential leaflet remodeling of bone marrow cell pre-seeded versus nonseeded bioresorbable transcatheter pulmonary valve replacements. JACC. Basic to Translational Science. 5 (1), 15-31 (2020).
  15. Van Haaften, E. E., Bouten, C. V. C., Kurniawan, N. A. Vascular mechanobiology: towards control of. Cells. , 1-24 (2017).
  16. De Jonge, N., et al. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs. PLoS ONE. 8 (9), 73161 (2013).
  17. Schmidt, J. B., Chen, K., Tranquillo, R. T. Effects of intermittent and incremental cyclic stretch on ERK signaling and collagen production in engineered tissue. Cellular and Molecular Bioengineering. 9 (1), 55-64 (2016).
  18. Luo, J., et al. Tissue-engineered vascular grafts with advanced mechanical strength from human iPSCs. Cell Stem Cell. 26 (2), 251-261 (2020).
  19. Van Haaften, E. E., et al. Decoupling the effect of shear stress and stretch on tissue growth and remodeling in a vascular graft. Tissue Engineering Part C: Methods. 24 (7), 418-429 (2018).
  20. Gupta, V., Tseng, H., Lawrence, B. D., Jane Grande-Allen, K. Effect of cyclic mechanical strain on glycosaminoglycan and proteoglycan synthesis by heart valve cells. Acta Biomaterialia. 5 (2), 531-540 (2009).
  21. Lin, S., Mequanint, K. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues. Acta Biomaterialia. 59, 200-209 (2017).
  22. Venkataraman, L., Bashur, C. A., Ramamurthi, A. Impact of cyclic stretch on induced elastogenesis within collagenous conduits. Tissue Engineering. Part A. 20 (9-10), 1403-1415 (2014).
  23. Huang, A. H., et al. Biaxial stretch improves elastic fiber maturation, collagen arrangement, and mechanical properties in engineered arteries. Tissue Engineering Part C Methods. 22 (6), 524-533 (2016).
  24. Hinderer, S., et al. In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold. Biomedical Materials. 10 (3), 034102 (2015).
  25. Eoh, J. H., et al. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells. Acta Biomaterialia. 52, 49-59 (2017).
  26. Smits, A. I. P. M., Bouten, C. V. C. Tissue engineering meets immunoengineering: Prospective on personalized in situ tissue engineering strategies. Current Opinion in Biomedical Engineering. 6, 17-26 (2018).
  27. Wissing, T. B., Bonito, V., Bouten, C. V. C., Smits, A. I. P. M. Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective. npj Regenerative Medicine. 2 (1), 18 (2017).
  28. Hibino, N., et al. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. The FASEB Journal. 25 (12), 4253-4263 (2011).
  29. Godwin, J. W., Pinto, A. R., Rosenthal, N. A. Macrophages are required for adult salamander limb regeneration. Proceedings of the National Academy of Sciences of the United States of America. 110 (23), 9415-9420 (2013).
  30. Godwin, J. W., Debuque, R., Salimova, E., Rosenthal, N. A. Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. npj Regenerative Medicine. 2 (1), 22 (2017).
  31. McBane, J. E., Cai, K., Labow, R. S., Santerre, J. P. Co-culturing monocytes with smooth muscle cells improves cell distribution within a degradable polyurethane scaffold and reduces inflammatory cytokines. Acta Biomaterialia. 8 (2), 488-501 (2012).
  32. Battiston, K. G., Ouyang, B., Labow, R. S., Simmons, C. A., Santerre, J. P. Monocyte/macrophage cytokine activity regulates vascular smooth muscle cell function within a degradable polyurethane scaffold. Acta Biomaterialia. 10 (3), 1146-1155 (2014).
  33. Ploeger, D. T., et al. Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Communication and Signaling. 11 (1), 29 (2013).
  34. McBane, J. E., Santerre, J. P., Labow, R. S. The interaction between hydrolytic and oxidative pathways in macrophage-mediated polyurethane degradation. Journal of Biomedical Materials Research. Part A. 82 (4), 984-994 (2007).
  35. Wissing, T. B., et al. Macrophage-driven biomaterial degradation depends on scaffold microarchitecture. Frontiers in Bioengineering and Biotechnology. 7, 87 (2019).
  36. Wolf, M. T., Vodovotz, Y., Tottey, S., Brown, B. N., Badylak, S. F. Predicting in vivo responses to biomaterials via combined in vitro and in silico analysis. Tissue Engineering Part C: Methods. 21 (2), 148-159 (2015).
  37. Grotenhuis, N., Bayon, Y., Lange, J. F., Van Osch, G. J. V. M., Bastiaansen-Jenniskens, Y. M. A culture model to analyze the acute biomaterial-dependent reaction of human primary macrophages. Biochemical and Biophysical Research Communications. 433 (1), 115-120 (2013).
  38. Jannasch, M., et al. A comparative multi-parametric in vitro model identifies the power of test conditions to predict the fibrotic tendency of a biomaterial. Scientific Reports. 7 (1), 1689 (2017).
  39. Wang, Z., et al. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials. 35 (22), 5700-5710 (2014).
  40. McWhorter, F. Y., Davis, C. T., Liu, W. F. Physical and mechanical regulation of macrophage phenotype and function. Cellular and Molecular Life Sciences. 72 (7), 1303-1316 (2014).
  41. Ballotta, V., Driessen-Mol, A., Bouten, C. V. C., Baaijens, F. P. T. Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials. 35 (18), 4919-4928 (2014).
  42. Dziki, J. L., et al. The effect of mechanical loading upon extracellular matrix bioscaffold-mediated skeletal muscle remodeling. Tissue Engineering. Part A. 24 (1-2), 34-46 (2018).
  43. Wissing, T. B., et al. Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages – implications for in situ vascular tissue engineering. Biomaterials Science. 8 (1), 132-147 (2020).
  44. Van Haaften, E. E., Wissing, T. B., Kurniawan, N. A., Smits, A. I. P. M., Bouten, C. V. C. Human in vitro model mimicking material-driven vascular regeneration reveals how cyclic stretch and shear stress differentially modulate inflammation and matrix deposition. Advanced Biosystems. 4 (6), 1900249 (2020).
  45. Ballotta, V., Smits, A. I. P. M., Driessen-Mol, A., Bouten, C. V. C., Baaijens, F. P. T. Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow. Biomaterials. 35 (33), 9100-9113 (2014).
  46. Bonito, V., de Kort, B. J., Bouten, C. V. C., Smits, A. I. P. M. Cyclic strain affects macrophage cytokine secretion and extracellular matrix turnover in electrospun scaffolds. Tissue Engineering Part A. 25 (17-18), 1310-1325 (2019).
  47. Battiston, K. G., Labow, R. S., Simmons, C. A., Santerre, J. P. Immunomodulatory polymeric scaffold enhances extracellular matrix production in cell co-cultures under dynamic mechanical stimulation. Acta Biomaterialia. 24, 74-86 (2015).
  48. Smits, A. I. P. M., Driessen-Mol, A., Bouten, C. V. C., Baaijens, F. P. T. A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering. Tissue Engineering Part C: Methods. 18 (6), 475-485 (2012).
  49. Smits, A. I. P. M., Ballotta, V., Driessen-Mol, A., Bouten, C. V. C., Baaijens, F. P. T. T. Shear flow affects selective monocyte recruitment into MCP-1-loaded scaffolds. Journal of Cellular and Molecular Medicine. 18 (11), 2176-2188 (2014).
  50. Ballotta, V., Smits, A. I. P. M., Driessen-Mol, A., Bouten, C. V. C., Baaijens, F. P. T. Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow. Biomaterials. 35 (33), 9100-9113 (2014).
  51. Fahy, N., Menzel, U., Alini, M., Stoddart, M. J. Shear and dynamic compression modulates the inflammatory phenotype of human monocytes in vitro. Frontiers in Immunology. 10, 383 (2019).
  52. Pennings, I., et al. Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion. Biofabrication. 12 (1), 015009 (2019).
  53. Wang, J., et al. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration. Acta Biomater. 50, 546-555 (2017).
  54. Huang, A. H., et al. Design and use of a novel bioreactor for regeneration of biaxially stretched tissue-engineered vessels. Tissue Engineering. Part C, Methods. 21 (8), 841-851 (2015).
  55. Huang, A. H., Niklason, L. E. Engineering biological-based vascular grafts using a pulsatile bioreactor. Journal of Visualized Experiments. (52), e2646 (2011).
  56. Bono, N., et al. A Dual-mode bioreactor system for tissue engineered vascular models. Annals of Biomedical Engineering. 45 (6), 1496-1510 (2017).
  57. Wolf, F., et al. VascuTrainer: a mobile and disposable bioreactor system for the conditioning of tissue-engineered vascular grafts. Annals of Biomedical Engineering. 46 (4), 616-626 (2018).
  58. Ramaswamy, S., et al. A novel bioreactor for mechanobiological studies of engineered heart valve tissue formation under pulmonary arterial physiological flow conditions. Journal of Biomechanical Engineering. 136 (12), 121009 (2014).
  59. Piola, M., et al. A compact and automated ex vivo vessel culture system for the pulsatile pressure conditioning of human saphenous veins. Journal of Tissue Engineering and Regenerative Medicine. 10 (3), 204-215 (2016).
  60. Vanerio, N., Stijnen, M., de Mol, B. A. J. M., Kock, L. M. An innovative ex vivo vascular bioreactor as comprehensive tool to study the behavior of native blood vessels under physiologically relevant conditions. Journal of Engineering and Science in Medical Diagnostics and Therapy. 2 (4), (2019).
  61. Kural, M. H., Dai, G., Niklason, L. E., Gui, L. An ex vivo vessel injury model to study remodeling. Cell Transplantation. 27 (9), 1375-1389 (2018).
  62. Sinha, R., et al. A medium throughput device to study the effects of combinations of surface strains and fluid-flow shear stresses on cells. Lab on a Chip. 15 (2), 429-439 (2015).
  63. Beca, B. M., Sun, Y., Wong, E., Moraes, C., Simmons, C. A. Dynamic bioreactors with integrated microfabricated devices for mechanobiological screening. Tissue Engineering Part C: Methods. 25 (10), 581-592 (2019).
  64. Liu, H., Usprech, J., Sun, Y., Simmons, C. A. A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells. Acta Biomaterialia. 34, 113-124 (2016).
  65. Szafron, J. M., Ramachandra, A. B., Breuer, C. K., Marsden, A. L., Humphrey, J. D. Optimization of tissue-engineered vascular graft design using computational modeling. Tissue Engineering Part C: Methods. 25 (10), 561-570 (2019).
  66. Emmert, M. Y., et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Science Translational Medicine. 10 (440), (2018).
  67. Mol, A., et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials. 26 (16), 3113-3121 (2005).
  68. van Kelle, M. A. J., et al. A Bioreactor to identify the driving mechanical stimuli of tissue growth and remodeling. Tissue Engineering Part C: Methods. 23 (6), (2017).
  69. van den Broek, C. N., et al. Medium with blood-analog mechanical properties for cardiovascular tissue culturing. Biorheology. 45 (6), 651-661 (2008).
check_url/fr/61824?article_type=t

Play Video

Citer Cet Article
Koch, S. E., van Haaften, E. E., Wissing, T. B., Cuypers, L. A. B., Bulsink, J. A., Bouten, C. V. C., Kurniawan, N. A., Smits, A. I. P. M. A Multi-Cue Bioreactor to Evaluate the Inflammatory and Regenerative Capacity of Biomaterials under Flow and Stretch. J. Vis. Exp. (166), e61824, doi:10.3791/61824 (2020).

View Video