Summary

微流体设备中的电场诱导神经前体细胞分化

Published: April 14, 2021
doi:

Summary

在这项研究中,我们提出了一个单纯由微流系统中直接电流(DC)脉冲刺激诱导的神经干细胞和祖细胞(NPC)分化的协议。

Abstract

生理电场 (EF) 在细胞迁移、分化、分裂和死亡中起着至关重要的作用。本文描述了一个利用显微镜进行长期细胞分化研究的微流体细胞培养系统。微流体系统由以下主要部件组成:光学透明电控芯片、透明钛-锡氧化物 (ITO) 加热器、培养物介质灌装泵、电源、高频功率放大器、EF 多路复用器、可编程 X-Y-Z 电动舞台以及配备数码相机的倒相对比显微镜。微流体系统有利于简化整体实验设置,进而有利于试剂和样品的消耗。这项工作涉及由直接电流(DC)脉冲刺激诱导的神经干细胞和祖细胞(NPC)的分化。在干细胞维持介质中,小鼠NC(mNPC)在直流脉冲刺激后分化成神经元、星形细胞和寡头细胞。结果表明,简单的直流脉冲治疗可以控制mNPC的命运,并可用于开发神经系统疾病的治疗策略。该系统可用于多渠道的细胞培养、长期EF刺激、细胞形态观测和自动延时图像采集。这种微流体系统不仅缩短了所需的实验时间,而且提高了微环境控制的准确性。

Introduction

神经前体细胞(NPC,也称为神经干细胞和祖细胞)可以作为神经退行性治疗策略1的有希望的候选人。未分化的NPC具有自我更新能力、多能性和增殖能力2、3。先前的一项研究曾报道说,细胞外基质和分子介质调节NPC的分化。表皮生长因子(EGF)和基本成纤维细胞生长因子(bFGF)促进NPC增殖,从而保持无差别状态4。

先前的研究曾报道,电刺激可以调节细胞生理活动,如第5分区、迁移6、7、8、分化1、9、10和细胞死亡11。电场在中枢神经系统发育和再生中起着至关重要的作用。从2009年至2019年,该实验室调查了EF在微流体系统1、6、7、8、15、16、17中应用的细胞反应。多通道、光学透明、电触电 (MOE) 芯片设计用于免疫荧光染色,用于共焦显微镜。该芯片具有较高的光学透明度和良好的耐用性,允许在一项研究中同时进行三次独立的刺激实验和若干免疫受污染条件。微流体系统有利于简化整体实验设置,进而有利于试剂和样品的消耗。本文描述了用于长期细胞分化研究的微流体细胞培养系统的发展。

Protocol

1. MOE 芯片的设计和制造 使用适当的软件(图1A,材料表)绘制单个聚甲基甲基酸酯(PMMA)层和双面胶带的图案。用 CO2 激光机抄写机(图 1B)切割 PMMA 板材和双面胶带。 打开 CO2 激光抄写机并将其连接到个人计算机。使用软件打开设计模式文件。 将 PMMA 板(275 mm x 400 mm)或双面胶带(210 mm x 297 mm)放…

Representative Results

MOE芯片的详细配置显示在 图1中。微流体芯片为减少实验设置尺寸、样品体积和试剂体积提供了有益的方法。MOE芯片设计用于在一项研究中同时进行三个独立的EF刺激实验和几个免疫染色条件(图3)。此外,光学透明度高的MOE芯片也适合共焦显微镜检查。MOE芯片还设计用于在单个实验中同时研究不同细胞培养条件(例如,多个EF…

Discussion

在制造 MOE 芯片时,适配器将连接到 MOE 芯片的 1 层,并带有速效氰酸酯胶水。胶水涂在适配器的 4 个角上,然后均匀地施加在适配器上。必须避免胶水过量,以确保胶水完全聚合。此外,已完成的 MOE 芯片组件在真空室中孵育。此步骤有助于消除 PMMA 层、双面胶带和盖玻璃之间的气泡。

电极材料的选择是基于这样一个事实,即氯化物离子,这是丰富的存在于中等,是电解产?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者感谢西尼卡学院生物医学研究所的唐K.唐教授在提供小鼠神经干细胞和祖细胞(mNPC)方面的帮助。作者还感谢唐克唐教授和李英山女士就跨国公司的区别化问题进行了宝贵的讨论。

Materials

1 mm PMMA substrates (Layers 1-3) BHT K2R20 Polymethyl methacrylate (PMMA), http://www.bothharvest.com/zh-tw/product-421076/Optical-PMMA-Non-Coated-BHT-K2Rxx-xx=-thickness-choices.html
15 mL plastic tube Protech Technology Enterprise Co., Ltd CT-15-PL-TW Conical bottomed tube with cap, assembled, presterilized
3 mL syringe TERUMO DVR-3413 3 mL oral syringes, without needle
3 mm optical grade PMMA (Layer 5) CHI MEI Corporation ACRYPOLY PMMA Sheet Optical grade PMMA
3-way stopcock NIPRO NCN-3L Sterile disposable 3-way stopcock
5 mL syringe TERUMO DVR-3410 5 mL oral syringes, without needle
Adaptor Dong Zhong Co., Ltd. Customized PMMA adaptor
Agarose Sigma-Aldrich A9414 Agarose, low gelling temperature
Amplifier A.A. Lab Systems Ltd A-304 High voltage amplifier
AutoCAD software Autodesk Educational Version Drafting
B-27 supplement Gibco 12587-010 B-27 supplement (50x), minus vitamin A
Basic fibroblast growth factor (bFGF)  Peprotech AF-100-18B Also called recombinant human FGF-basic
Black rubber bung TERUMO DVR-3413 From 3 mL oral syringes, without needle
Bovine serum albumin (BSA) Sigma-Aldrich B4287 Blocking reagent 
Centrifuge HSIANGTAI CV2060 Centrifuge
CO2 laser scriber Laser Tools and Technics Corp.  ILS-II Purchased from http://www.lttcorp.com/index.htm
Cone connector IDEX Health & Science F-120X One-piece fingertight 10-32 coned, for 1/16" OD natural
Cone-Luer adaptor IDEX Health & Science P-659 Luer Adapter 10-32 Female to Female Luer, PEEK
Confocal fluorescence microscope Leica Microsystems TCS SP5 Leica TCS SP5 user manual, http://www3.unifr.ch/bioimage/wp-content/uploads/2013/10/User-Manual_TCS_SP5_V02_EN.pdf
Digital camera OLYMPUS E-330 Automatic time-lapse image acquisition
Digital oscilloscope Tektronix TDS2024 Measure voltage or current signals over time in an electronic circuit or component to display amplitude and frequency.
Double-sided tape 3M  PET 8018 Purchased from http://en.thd.com.tw/
Dulbecco’s modified Eagle’s medium/Ham's nutrient mixture F-12 (DMEM/F12) Gibco 12400024 DMEM/F-12, powder, HEPES
Dulbecco's phosphate-buffered saline (DPBS) Gibco 21600010 DPBS, powder, no calcium, no magnesium
EF multiplexer Asiatic Sky Co., Ltd. Customized Monitor and control the electric current in individual channels
Epidermal growth factor (EGF) Peprotech AF-100-15 Also called recombinant human EGF
Fast-acting cyanoacrylate glue 3M  7004T Strength instant adhesive (liquid)
Flat bottom connector IDEX Health & Science P-206 Flangeless male nut Delrin, 1/4-28 flat-bottom, for 1/16" OD blue
Function generator Agilent Technologies 33120A High-performance 15 MHz synthesized function generator with built-in arbitrary waveform capability
Goat anti-mouse IgG H&L (Alexa Fluor 488) Abcam ab150117 Goat anti-mouse IgG H&L (Alexa Fluor 488) preadsorbed
Goat anti-rabbit IgG H&L (Alexa Fluor 555) Abcam ab150086 Goat polyclonal secondary antibody to rabbit IgG – H&L (Alexa Fluor 555), preadsorbed
Hoechst 33342 Invitrogen H3570 Nuclear staining
ImageJ software National Institutes of Health 1.48v Analyze the fluorescent images 
Indium–tin–oxide (ITO) glass Merck 300739 For ITO heater
Inverted phase contrast microscope OLYMPUS CKX41 For cell morphology observation
K-type thermocouple Tecpel TPK-02A Temperature thermocouples
Luer adapter IDEX Health & Science P618-01 Luer adapter female Luer to 1/4-28 male polypropylene
Luer lock syringe TERUMO DVR-3413 For agar salt bridges
Mouse anti-GFAP eBioscience 14-9892 Astrocytes marker
Oligodendrocyte  marker  O4  antibody R&D Systems MAB1326 Oligodendrocytes marker
Paraformaldehyde (PFA) Sigma-Aldrich P6148 Fixing agent
Phosphate buffered saline (PBS) Basic Life BL2651 Washing solution
Poly-L-Lysine (PLL) SIGMA P4707 Coating solution
Precision cover glasses thickness No. 1.5H MARIENFELD 107242 https://www.marienfeld-superior.com/precision-cover-glasses-thickness-no-1-5h-tol-5-m.html
Programmable X-Y-Z motorised stage Tanlian Inc Customized Purchased from http://www.tanlian.tw/ndex.files/motort.htm
Proportional–integral–derivative (PID) controller Toho Electronics TTM-J4-R-AB Temperature controller 
PTFE tube Professional Plastics Inc. Taiwan Branch Outer diameter 1/16 Inches White translucent PTFE tubing
Rabbit anti-Tuj1 Abcam ab18207 Neuron marker
Syringe pump New Era Systems Inc NE-1000 NE-1000 programmable single syringe pump
TFD4 detergent FRANKLAB TFD4 Cover glass cleaner
Thermal bonder Kuan-MIN Tech Co. Customized Purchased from http://kmtco.com.tw/
Triton X-100 Sigma-Aldrich T8787 Permeabilized solution
Ultrasonic cleaner LEO LEO-300S Ultrasonic steri-cleaner
Vacuum chamber DENG YNG INSTRUMENTS CO., Ltd. DOV-30 Vacuum drying oven
White fingertight plug IDEX Health & Science P-316 1/4-28 Flat-Bottom, https://www.idex-hs.com/store/fluidics/fluidic-connections/plug-teflonr-pfa-1-4-28-flat-bottom.html

References

  1. Chang, H. F., Lee, Y. S., Tang, T. K., Cheng, J. Y. Pulsed DC electric field-induced differentiation of cortical neural precursor cells. PLoS One. 11 (6), e0158133 (2016).
  2. Li, S., Li, H., Wang, Z. Orientation of spiral ganglion neurite extension in electrical fields of charge-balanced biphasic pulses and direct current in vitro. Hearing research. 267 (1-2), 111-118 (2010).
  3. Rajnicek, A. M., Robinson, K. R., McCaig, C. D. The direction of neurite growth in a weak DC electric field depends on the substratum: contributions of adhesivity and net surface charge. Developmental biology. 203 (2), 412-423 (1998).
  4. Kim, Y. H., et al. Differential regulation of proliferation and differentiation in neural precursor cells by the Jak pathway. Stem Cells. 28 (10), 1816-1828 (2010).
  5. Cunha, F., Rajnicek, A. M., McCaig, C. D. Electrical stimulation directs migration, enhances and orients cell division and upregulates the chemokine receptors CXCR4 and CXCR2 in endothelial cells. Journal of Vascular Research. 56 (1), 39-53 (2019).
  6. Chang, H. F., Cheng, H. T., Chen, H. Y., Yeung, W. K., Cheng, J. Y. Doxycycline inhibits electric field-induced migration of non-small cell lung cancer (NSCLC) cells. Scientific Reports. 9 (1), 8094 (2019).
  7. Tsai, H. F., Peng, S. W., Wu, C. Y., Chang, H. F., Cheng, J. Y. Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field. Biomicrofluidics. 6 (3), 34116 (2012).
  8. Huang, C. W., Cheng, J. Y., Yen, M. H., Young, T. H. Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosensors and Bioelectronics. 24 (12), 3510-3516 (2009).
  9. Jing, W., et al. Study of electrical stimulation with different electric-field intensities in the regulation of the differentiation of PC12 cells. American Chemical Society Chemical Neuroscience. 10 (1), 348-357 (2019).
  10. Guo, W., et al. Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene-poly(3,4-ethylenedioxythiophene) hybrid microfibers. American Chemical Society Nano. 10 (5), 5086-5095 (2016).
  11. Manabe, M., Mie, M., Yanagida, Y., Aizawa, M., Kobatake, E. Combined effect of electrical stimulation and cisplatin in HeLa cell death. Biotechnology and Bioengineering. 86 (6), 661-666 (2004).
  12. Liu, M., et al. Protective effect of moderate exogenous electric field stimulation on activating netrin-1/DCC expression against mechanical stretch-induced injury in spinal cord neurons. Neurotoxicity Research. 34 (2), 285-294 (2018).
  13. Haan, N., Song, B. Therapeutic application of electric fields in the injured nervous system. Advances in Wound Care. 3 (2), 156-165 (2014).
  14. Ariza, C. A., et al. The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Reviews and Reports. 6 (4), 585-600 (2010).
  15. Huang, C. W., et al. Gene expression of human lung cancer cell line CL1-5 in response to a direct current electric field. PLoS One. 6 (10), e25928 (2011).
  16. Sun, Y. S., Peng, S. W., Lin, K. H., Cheng, J. Y. Electrotaxis of lung cancer cells in ordered three-dimensional scaffolds. Biomicrofluidics. 6 (1), 14102-14114 (2012).
  17. Hou, H. S., Chang, H. F., Cheng, J. Y. Electrotaxis studies of lung cancer cells using a multichannel dual-electric-field microfluidic chip. Journal of Visualized Experiments. 106, e53340 (2015).
  18. Cheng, J. Y., Yen, M. H., Hsu, W. C., Jhang, J. H., Young, T. H. ITO patterning by a low power Q-switched green laser and its use in the fabrication of a transparent flow meter. Journal of Micromechanics and Microengineering. 17 (11), 2316-2323 (2007).
  19. Cheng, J. Y., Yen, M. H., Kuo, C. T., Young, T. H. A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics. 2 (2), 24105 (2008).
  20. Fuhr, G., Shirley, S. G. Cell handling and characterization using micron and submicron electrode arrays: state of the art and perspectives of semiconductor microtools. Journal of Micromechanics and Microengineering. 5 (2), 77-85 (1995).
  21. AChang, K. A., et al. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells. PLoS One. 6 (4), e18738 (2011).
  22. Lim, J. H., McCullen, S. D., Piedrahita, J. A., Loboa, E. G., Olby, N. J. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells. Cell Reprogram. 15 (5), 405-412 (2013).
check_url/fr/61917?article_type=t

Play Video

Citer Cet Article
Chang, H., Chou, S., Cheng, J. Electric-Field-Induced Neural Precursor Cell Differentiation in Microfluidic Devices. J. Vis. Exp. (170), e61917, doi:10.3791/61917 (2021).

View Video