Summary

为互连神经元微缩组织制造磁平台

Published: July 14, 2021
doi:

Summary

这项工作提出了一个自下而上的方法,以工程的局部磁力控制神经元组织。装有磁性纳米粒子(MNPs)的神经元状细胞被镀在上面,由垂直磁化的微模式平台控制。还描述了磁定性、MNP细胞吸收、细胞生存能力和统计分析。

Abstract

将神经元引导到有组织的神经网络的能力对再生医学、组织工程和生物面具有重大影响。许多研究旨在利用化学和地形线索引导神经元。然而,关于大面积的微米规模组织控制的报告很少。在这里,描述了一种有效的方法,用于将神经元放置在预设位点,并利用嵌入微模式磁性元素的磁平台,以微米级分辨率引导神经元生长。已经证明,用磁性纳米粒子(MNPs)加载神经元可以将其转换成受磁梯度影响的敏感磁性单位。按照这种方法,制作了一个独特的磁性平台,在该平台上,PC12细胞,一个常见的神经元样模型,被镀层并装载了超参数纳米粒子。沉积了具有稳定垂直磁化的铁磁(FM)多层薄膜,为磁态模式提供有效的吸引力。这些MNP加载的PC12单元,镀层和分化在磁平台上,优先附着在磁性模式上,中性生长与图案形状完全一致,形成定向网络。介绍了磁性、蜂窝MNP吸收、细胞生存能力和结果统计分析的定量表征方法。这种方法能够控制神经网络的形成,并通过磁力的操纵改善神经元到电极的接口,它可以成为网络体外研究的有效工具,并可能提供新的治疗生物接触方向。

Introduction

神经元的微观模式对组织再生1、2、3、4、5和神经电子设备6、7、8的发展具有巨大的潜力。然而,与生物组织一样,微米比例定位神经元在高空间分辨率下构成重大挑战。在这种尺度上形成预先设计的结构需要通过局部控制索马活力和轴向外生长来指导神经细胞过程。先前的研究表明,使用化学和物理线索9,10,11,12来指导神经元生长。在这里,一种新的方法侧重于通过磁场梯13、14、15、16、17控制细胞定位,将装有MNP的细胞转变为磁敏单元,可以远程操作。

Kunze等人用磁芯片和MNP加载的细胞来描述诱导细胞反应所需的力,他们证明早期轴向拉长可以通过细胞内部的机械张力触发。Tay等人证实,具有增强磁场梯度的微结构基板允许使用钙指示染料19对与MNPs一起使用的神经回路进行无线刺激。此外,曾等人将纳米粒子凝聚在细胞内,导致局部纳米粒子介质力接近细胞张力20。这导致了微磁基板的定义模式的制造,帮助研究细胞对机械力的反应。通过在细胞20内凝聚纳米粒子,实现了因应用局部纳米粒子介导力而产生的细胞张力。Lee等人开发了一种互补的金属氧化物半导体(CMOS)-微流体混合系统,他们在CMOS芯片中嵌入了一系列微电磁铁,以控制标有磁珠21的单个细胞的运动。

阿隆等人利用微尺度、预编程、磁垫作为磁性”热点”定位细胞22。也可以利用微模式磁阵列在细胞内刺激特定活动,使纳米粒子在特定的亚细胞位置23。细胞MNP的吸收已经成功地证明在水痘,大鼠和小鼠原神经元24,25,26。在这里,这已经证明在老鼠PC12 pheo色细胞细胞系,这之前有报道说,显示高吸收MNPs27。近年来,国会议员的医疗应用多种多方面,包括药物输送和治疗癌症治疗28、29、30、31。具体来说,研究涉及MNP和神经元网络32,33,34,35的应用。然而,在单细胞水平上使用MNP的神经元的磁组织值得进一步研究。

在这项工作中,描述了一种自下而上的方法,通过预先设计的平台设计本地磁力,用于控制神经元排列。介绍了调频多层机型微米尺度模式的制造。这种独特的调频多层结构创造了稳定的垂直磁化,从而对所有磁模式产生有效的吸引力。通过孵化,MNP 被加载到 PC12 单元中,将其转换为磁性敏感单元。在磁平台上镀层和分化的MNP加载单元优先附着在磁性模式上,中性生长与模式形状完全一致,形成定向网络。介绍了几种方法来描述调频多层和MNPs的磁性特性,并介绍了细胞MNP吸收和细胞生存性检测技术。此外,还详细介绍了神经元生长的形态参数和结果的统计分析。

Protocol

注意:在生物安全柜中执行所有生物反应。 1. 磁平台制造 光刻 使用抄写笔将玻璃滑入 2 x 2 厘米2。 用丙酮清洁玻璃滑梯,然后在超声波浴缸中分别清洁 5 分钟。用超高纯度 (UHP) 氮干燥。 在 60s 的 60s 中使用旋转涂层,将玻璃涂上光层,达到 1.5μm 厚度,在 60 年代以 100 °C 烘烤。使用光面罩或无面膜光刻技术,使用合适的波长,使用所需的图?…

Representative Results

制造了具有不同几何形状的磁平台(图1A)。磁模式通过溅射沉积:14个多层的Co80Fe20和Pd,分别为0.2纳米和1纳米。电子显微镜显示磁模式的总高度为~18纳米(图1B)。这种独特的调频多层沉积创造了一个稳定的平台,与基板平面相对于基板平面的垂直磁化同位素(PMA),使MNP加载的细胞对整个磁模式的吸引力,?…

Discussion

具有代表性的结果表明,在微米尺度上控制和组织神经元网络形成的方法的有效性。MNP 加载的 PC12 电池仍然可行,并被转换为磁敏单位,这些单元被从调频电极到特定部位的磁力所吸引。这在图 5C中表现得最好,其中细胞优先粘附在六边形较大的顶点上,而不是细线。此外,细胞的分支也随着磁模式的发展而发展。所有的控制实验都明确表明,磁力引导细胞体和生长的本地…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究得到了以色列科学和技术部以及以色列科学基金会(569/16)的支持。

Materials

16% Paraformaldehyde (formaldehyde) aqueous solution ELECTRON MICROSCOPY SCIENCES 15710
6-well cell culture plate FALCON 353846
96-well cell culture plate SPL life sciences 30096
Amphotericin B solution Biological Industries 03-028-1B
AZ 1514H photoresist MicroChemicals GmbH
AZ 351 B developer MicroChemicals GmbH
Bovine serum albumin (BSA) Biological Industries 03-010-1B
Cell and Tissue cultur flask Biofil TCF002250 75.0 cm^2 250 mL Vent cap, Non-treated
Cell culture dish Greiner Bio-One 627-160 35 mm
Cell Proliferation Kit (XTT-based) Biological Industries 20-300-1000
Centrifuge tube Biofil CFT021500 50 mL
Co80Fe20 at% sputter target ACI Alloys 99.95%
Collagen type I Corning Inc. 354236 Rat Tail, concentration range 3-4 mg/mL
Confocal microscope Leica TCS SP5
Cy2-conjugated AffiniPure Donkey Anti-rabbit secondary antibody Jackson ImmunoResearch Laboratories, Inc. 711-165-152
DAPI fluoromount-G SouthernBiotech 0100-20
Disposable needle KDL 23 G
Disposable  syringe Medispo 1160227640 10 mL
Donor horse serum Biological Industries 04-124-1A
ELISA reader Merk Millipore BioTek synergy 4 hybrid microplate reader
Ethanol 70% ROMICAL LTD 19-009102-80
Ethanol absolute (Dehydrated) Biolab-chemicals 52505
Fetal bovine serum (FBS) Biological Industries 04-127-1A
Fresh murine β-NGF Peprotech 450-34
GMW C-frame electromagnet . Buckley systems LTD 3470, 45 mm
Hydrochloric acid 32% DAEJUNG CHEMICAL & METALS 4170-4100
ImageJ US National Institutes of Health, Bethesda NeuronJ plugin
Inductively coupled plasma (ICP) Ametek Spectro SPECTRO ARCOS ICP-OES, FHX22 MultiView plasma
Keithley source-measure Keithley 2400
Keithley switching system Keithley 3700
L-glutamine Biological Industries 03-020-1B
Light microscope Leica DMIL LED
Maskless photolithography Heidelberg Inst. MLA150
Microscope Slides BAR-NAOR BN1042000C
Nitric acid 70% Sigma-Aldrich 438073
Normal donkey serum (NDS) Sigma D9663
PBS 10x hylabs BP507/1LD
PC12 cell line ATCC CRL-1721
Pd sputter target ACI Alloys 99.95%
Penicillin-streptomycin nystatin solution Biological Industries 03-032-1B
PrestoBlue cell viability reagent Molecular probes A-13261 resazurin-based
Rabbit antibody to α-tubulin Santa Cruz Biotechnology, Inc.
RF magnetron sputtering system Orion AJA Int. Orion 8
RPMI 1640 with l-glutamine Biological Industries 01-100-1A
Sonication bath KUDOS SK3210HP Frequency: 53 kHz. Ultrasonic power: 135 W
SQUID magnetometer Quantum Design, CA
Triton X-100 CHEM-IMPEX INTERNATIONAL 1279 non-ionic surfactant
XTT cell viability reagent

References

  1. Schmidt, C. E., Leach, J. B. Neural tissue engineering: strategies for repair and regeneration. Annual Review of Biomedical Engineering. 5 (1), 293-347 (2003).
  2. Kim, Y., Haftel, V. K., Kumar, S., Bellamkonda, R. V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 29 (21), 3117-3127 (2008).
  3. Dvir, T., Timko, B. P., Kohane, D. S., Langer, R. Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology. 6 (1), 13-22 (2011).
  4. Antman-Passig, M., Shefi, O. Remote Magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Letters. 16 (4), 2567-2573 (2016).
  5. Hardelauf, H., et al. Micropatterning neuronal networks. Royal Society of Chemistry. 139 (1), 3256-3264 (2014).
  6. Spira, M. E., Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotechnology. 8 (2), 83-94 (2013).
  7. Sahyouni, R., et al. Interfacing with the nervous system: a review of current bioelectric technologies. Neurosurgical Review. 42 (2), 227-241 (2019).
  8. Mcguire, A. F., Santoro, F., Cui, B. Interfacing cells with vertical nanoscale devices: applications and characterization. Annual Review of Analytical Chemistry. 111226 (1), 1-12 (2018).
  9. Marcus, M., et al. Interactions of neurons with physical environments. Advanced Healthcare Materials. 6 (15), (2017).
  10. Lim, J. Y., Donahue, H. J. Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Engineering. 13 (8), 1879-1891 (2007).
  11. Park, M., et al. Control over neurite directionality and neurite elongation on anisotropic micropillar arrays. Small. 12 (9), 1148-1152 (2016).
  12. Rutten, W. L. C., Ruardij, T. G., Marani, E., Roelofsen, B. H. Neural networks on chemically patterned electrode arrays: towards a cultured probe. Acta Neurochirurgica Supplement. 97 (2), 547-554 (2007).
  13. Bongaerts, M., et al. Parallelized manipulation of adherent living cells by magnetic nanoparticles-mediated forces. International Journal of Molecular Sciences. 21 (18), 6560 (2020).
  14. Kilgus, C., et al. Local gene targeting and cell positioning using magnetic nanoparticles and magnetic tips: comparison of mathematical simulations with experiments. Pharmaceutical Research. 29 (5), 1380-1391 (2012).
  15. Sensenig, R., Sapir, Y., MacDonald, C., Cohen, S., Polyak, B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine. 7 (9), 1425-1442 (2012).
  16. Gahl, T. J., Kunze, A. Force-mediating magnetic nanoparticles to engineer neuronal cell function. Frontiers in Neuroscience. 12, 299 (2018).
  17. Goranov, V., et al. 3D Patterning of cells in magnetic scaffolds for tissue engineering. Scientific Reports. 10 (1), 1-8 (2020).
  18. Kunze, A., et al. Engineering cortical neuron polarity with nanomagnets on a chip. ACS Nano. 9 (4), 3664-3676 (2015).
  19. Tay, A., Di Carlo, D. Magnetic nanoparticle-based mechanical stimulation for restoration of mechano-sensitive ion channel equilibrium in neural networks. Nano Letters. 17 (2), 886-892 (2017).
  20. Tseng, P., Judy, J. W., Di Carlo, D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nature Methods. 9 (11), 1113-1119 (2012).
  21. Lee, H., Liu, Y., Ham, D., Westervelt, R. M. Integrated cell manipulation system – CMOS/microfluidic hybrid. Lab on a Chip. 7 (3), 331-337 (2007).
  22. Alon, N., et al. Magnetic micro-device for manipulating PC12 cell migration and organization. Lab on a Chip. 15 (9), 2030 (2015).
  23. Tseng, P., Di Carlo, D., Judy, J. W. Rapid and dynamic intracellular patterning of cell-internalized magnetic fluorescent nanoparticles. Nano Letters. 9 (8), 3053-3059 (2009).
  24. Marcus, M., et al. Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations. Journal of Nanobiotechnology. 14, 37 (2016).
  25. Petters, C., Dringen, R. Accumulation of iron oxide nanoparticles by cultured primary neurons. Neurochemistry International. 81, 1-9 (2015).
  26. Sun, Z., et al. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. International Journal of Nanomedicine. 8, 961-970 (2013).
  27. Pinkernelle, J., Calatayud, P., Goya, G. F., Fansa, H., Keilhoff, G. Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neuroscience. 13 (1), 32 (2012).
  28. Shubayev, V. I., Pisanic, T. R., Jin, S. Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews. 61 (6), 467-477 (2009).
  29. Pankhurst, Q. A., Connolly, J., Jones, S. K., Dobson, J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics. 36 (13), 167-181 (2003).
  30. Krishnan, K. M. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Transactions on Magnetics. 46 (7), 2523-2558 (2010).
  31. Johannsen, M., et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. European Urology. 52 (6), 1653-1662 (2007).
  32. Roet, M., et al. Progress in neuromodulation of the brain: A role for magnetic nanoparticles. Progress in Neurobiology. 177, 1-14 (2019).
  33. Polak, P., Shefi, O. Nanometric agents in the service of neuroscience: Manipulation of neuronal growth and activity using nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine. 11 (6), 1467-1479 (2015).
  34. Holt, L. M., Olsen, M. L. Novel applications of magnetic cell sorting to analyze cell-type specific gene and protein expression in the central nervous system. PloS One. 11 (2), 0150290 (2016).
  35. Riggio, C., et al. The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomedicine: Nanotechnology, Biology and Medicine. 10 (7), 1549-1558 (2014).
  36. Abramoff, M. D., Magalhaes, P. J., Ram, S. J. Image processing with ImageJ. Biophotonics International. 11 (7), 36-42 (2004).
  37. Marcus, M., et al. Magnetic organization of neural networks via micro-patterned devices. Advanced Materials Interfaces. 7 (19), 2000055 (2020).
  38. Kachlon, Y., Kurzweil, N., Sharoni, A. Extracting magnetic anisotropy energies in Co/Pd multilayers via refinement analysis of the full magnetoresistance curves. Journal of Applied Physics. 115 (17), 173911 (2014).
  39. Gura, S., Margel, S. Nucleation and growth of magnetic metal oxide nanoparticles and its use. European Patent Office Publ of Application with search report. , (1999).
  40. Baranes, K., Kollmar, D., Chejanovsky, N., Sharoni, A., Shefi, O. Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions. Journal of Molecular Histology. 43 (4), 437-447 (2012).
  41. Baranes, K., Chejanovsky, N., Alon, N., Sharoni, A., Shefi, O. Topographic cues of nano-scale height direct neuronal growth pattern. Biotechnology and Bioengineering. 109 (7), 1791-1797 (2012).
  42. David-Pur, M., Bareket-Keren, L., Beit-Yaakov, G., Raz-Prag, D., Hanein, Y. All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed Microdevices. 16 (1), 43-53 (2014).
  43. Walia, S., et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales. Applied Physics Reviews. 2, 11303 (2015).
  44. Ngo, D. T., et al. Perpendicular magnetic anisotropy and the magnetization process in CoFeB/Pd multilayer films. Journal of Physics D: Applied Physics. 47 (44), (2014).
  45. Barsukov, I., et al. Field-dependent perpendicular magnetic anisotropy in CoFeB thin films. Applied Physics Letters. 105 (15), 152403 (2014).
  46. Zhang, S., Gao, H., Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 9 (9), 8655-8671 (2015).
  47. Marcus, M., Skaat, H., Alon, N., Margel, S., Shefi, O. NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells. Nanoscale. 7 (3), 1058-1066 (2015).
  48. Marcus, M., et al. Magnetic targeting of growth factors using iron oxide nanoparticles. Nanomaterials. 8 (9), 707 (2018).
check_url/fr/62013?article_type=t

Play Video

Citer Cet Article
Indech, G., Plen, R., Levenberg, D., Vardi, N., Marcus, M., Smith, A., Margel, S., Shefi, O., Sharoni, A. Fabrication of Magnetic Platforms for Micron-Scale Organization of Interconnected Neurons. J. Vis. Exp. (173), e62013, doi:10.3791/62013 (2021).

View Video