Summary

ショウジョウバエ細胞におけるイン核Hi-C

Published: September 15, 2021
doi:

Summary

ゲノムは核空間内で異なる構造に編成され、染色体立体構造の捕捉技術によって明らかにすることができる。核内Hi-C法は、ショウジョウバエ細胞株におけるクロマチン相互作用のゲノム全体のコレクションを提供し、制限フラグメントレベルでメガベース解像度で探索できる接触マップを生成する。

Abstract

ゲノムは、ドメイン間の相互作用を分離する境界によって区切られたトポロジカルに関連付けられたドメイン(TAD)に編成される。ショウジョウバエでは、TADの形成と境界の根底にあるメカニズムはまだ調査中です。ここで説明する核内Hi-C法の適用は 、ノッチ 遺伝子を単離するTAD境界における建築タンパク質(AP)結合部位の機能を解剖するのに役立った。APの損失を引き起こすドメイン境界の遺伝子改変は、TAD融合、転写欠陥、および長距離トポロジカル変化をもたらす。これらの結果は、ショウジョウバエにおけるドメイン境界形成および遺伝子発現制御に対する遺伝要素の寄与を示す証拠を提供した。ここでは、核内Hi-C法について詳細に説明し、これはプロトコルと共に実験の品質を評価するための重要なチェックポイントを提供する。また、異なるゲノムスケールでゲノム相互作用を分析するために必要なシーケンシング読み取り数と有効なHi-Cペアも示されています。CRISPR/Cas9は、この核内Hi-Cプロトコルを用いたゲノム相互作用の調節要素の遺伝子編集と高解像度プロファイリングを、遺伝的要素の構造機能の調査のための強力な組み合わせとなり得る。

Introduction

真核生物では、ゲノムは第1相間の核空間内の特定の領域を占める染色体に分割される。染色体を形成するクロマチンは、転写的に寛容であるアクセス可能なクロマチンの1つと、転写的に抑制的なコンパクトクロマチンの2つの主要な状態に分けることができます。これらのクロマチン状態は、核空間で分離し、めったに混ざらず、核2に2つの異なるコンパートメントを形成する。サブメガベーススケールでは、境界は、染色体組織3、4、5をマークするTADと呼ばれる高周波クロマチン相互作用のドメイン分離します。哺乳類では、TAD境界は、凝集およびCCCTC結合因子(CTCF)6、7、8によって占められます。凝集複合体は、安定したクロマチンループ9、10、13、14を形成するためにゲノム配列において収束配向で配置されたCTCF結合部位においてクロマチンを押し出し停止する。CTCFDNA結合部位の境界または凝集タンパク質の存在量の減少における遺伝的破壊は、調節要素間の異常な相互作用、TAD形成の喪失、および遺伝子発現調節緩和9、10、11、13、14をもたらす。

ショウジョウバエでは、TAD間の境界は、境界元素関連因子32 kDa(BEAF-32)、モチーフ1結合タンパク質(M1BP)、中心タンパク質190(CP190)、毛深翼(SuHW)の抑制剤、CTCFを含むいくつかのAPによって占められており、活性なトーン修飾およびポリメラーゼII.17において濃縮される。ショウジョウバエでは、TADが転写13、17、19の結果として現れ境界形成および絶縁特性における独立APの正確な役割はまだ調査中であると示唆されている。したがって、ショウジョウバエのドメインが類似した転写状態の領域の凝集の唯一の結果であるかどうか、またはCTCFを含むAPが境界形成に寄与するかどうかは、完全に特徴づけられるままである。染色体立体構造キャプチャ技術の開発と次世代シーケンシングを通じて、ゲノム接点の高解像度の探索が可能になった。Hi-Cプロトコルは、クロマチンフラグメント間のスプリアスライゲーション産物を回避するために「溶液中」2を行うライゲーションステップで最初に記載した。しかし、いくつかの研究は、データ中の有用なシグナルが溶液20,21になかった部分的に溶解した核で形成されたライゲーション生成物から来たという認識を指摘した。

次に、単細胞Hi-C実験22の一部として核内部のライゲーションを行うようにプロトコルを改変した。核内Hi-Cプロトコルは、その後、ゲノム距離の全範囲にわたってより一貫したカバレッジを生み出し、より少ない技術的なノイズ23、24でデータを生成するために、細胞集団Hi-Cに組み込まれた。ここで詳細に説明するプロトコルは、核内Hi-Cプロトコル23,24の集団に基づいておりショウジョウバエ25ノッチ遺伝子遺伝子座遺伝子のドメイン境界からCTCFおよびM1BPのDNA結合モチーフを遺伝的に除去した結果を調査するために使用された。この結果は、境界でAPのDNA結合モチーフを変更することは、ノッチドメイン形成、ノッチ座を取り巻く領域におけるより大きなトポロジカル欠陥、および遺伝子発現調節緩和に大きな影響を及ぼすことを示している。これは、ドメイン境界における遺伝的要素が、ショウジョウバエ25におけるゲノムトポロジーおよび遺伝子発現の維持にとって重要であることを示している。

Protocol

1. 固定 1000万のシュナイダーのライン2プラス(S2R+)細胞から始め、室温(RT)で10%のウシ胎児血清(FBS)を含むシュナイダー培地で17.5mLの細胞懸濁液を調製する。 メタノールフリーホルムアルデヒドを添加し、2%の最終濃度を得る。RTで10分間混ぜてインキュベートし、毎分混ぜるように注意してください。注意:ホルムアルデヒドは有害な化学物質です。適切な安全衛生規則に従い?…

Representative Results

以下に、Hi-C プロトコルが正常に機能した結果を示します (図 1Aの Hi-C プロトコル ワークフローの概要を参照してください)。核のHi-C実験の間にはいくつかの品質管理のチェックポイントがある。サンプルアリコートは、(UD)および(D)後に、結紮後(L)と同様にクロマチン制限ステップを回収した。架橋を逆転させ、DNAを精製し、アガロースゲル上で動かした。Mbo Iとの制限…

Discussion

ここで提示される核中のHi-C法は、ショウジョウバエゲノムトポロジーの詳細な探索を高解像度で可能にし、プロモーターおよびエンハンサーなどの調節要素間のクロマチンループからTADおよび大きなコンパートメント識別25までの異なるゲノムスケールでのゲノム相互作用の図を提供する。同じ技術は、いくつかの修飾33を有する哺乳類組織にも効率的に?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この研究は、UNAM技術イノベーション研究支援プログラム(PAPIIT)助成金番号IN207319と科学技術国家評議会(CONACyT-FORDECyT)助成金番号303068によって支援されました。A.E.-L.科学技術国家評議会(CONACyT)CVU番号968128によってサポートされている修士課程の学生です。

Materials

16% (vol/vol) paraformaldehyde solution Agar Scientific R1026
Biotin-14-dATP Invitrogen CA1524-016
ClaI enzyme NEB R0197S
COVARIS Ultrasonicator Covaris LE220-M220
Cut Smart NEB B72002S
Dulbecco's Modified Eagle Medium (DMEM) 1x Life Technologies 41965-039
Dynabeads MyOne Streptabidin C1 Invitrogen 65002
Fetal bovine serum (FBS) sterile filtered Sigma F9665
Klenow Dna PolI large fragment NEB M0210L
Klenow exo(-) NEB M0210S
Ligation Buffer NEB B020S
MboI enzyme NEB R0147M
NP40-Igepal SIGMA CA-420 Non-ionic surfactant for addition in lysis buffer
PE adapter 1.0 Illumina 5'-P-GATCGGAAGAGCGGTTCAGCAG
GAATGCCGAG-3'
PE adapter 2.0 Illumina 5'-ACACTCTTTCCCTACACGACGCT
CTTCCGATCT-3'
PE PCR primer 1.0 Illumina 5'-AATGATACGGCGACCACCGAGAT
CTACACTCTTTCCCTACACGACG
CTCTTCCGATCT-3'
PE PCR primer 2.0 Illumina 5'-CAAGCAGAAGACGGCATACGAG
ATCGGTCTCGGCATTCCTGCTGA
ACCGCTCTTCCGATCT-3'
Phenol: Chloroform:Isoamyl Alcohol 25:24:1 SIGMA P2069
Primer 1 (known interaction, Figure 2A) Sigma 5'-TCGCGGTAATTTTGCGTTTGA-3'
Primer 2 (known interactions, Figure 2A) Sigma 5'-CCTCCCTGCCAAAACGTTTT-3'
Protease inhibitor cocktail tablet Roche 4693132001
Proteinase K Roche 3115879001
Qubit ThermoFisher Q33327
RNAse Roche 10109142001
SPRI Beads Beckman B23318
T4 DNA ligase Invitrogen 15224-025
T4 DNA polymerase NEB M0203S
T4 polynucleotide kinase (PNK)  NEB M0201L
TaqPhusion NEB M0530S DNA polymerase
Triton X-100 Non-ionic surfactant for quenching of SDS

References

  1. Cremer, T., Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Review Genetics. 2, 292-301 (2001).
  2. Lieberman-Aiden, E., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 326, 289-293 (2009).
  3. Dixon, J. R., et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 485, 376-380 (2012).
  4. Sexton, T., et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell. 148 (3), 458-472 (2012).
  5. Dixon, J. R., Gorkin, D. U., Ren, B. Chromatin domains: the unit of chromosome organization. Molecular Cell. 62, 668-680 (2016).
  6. Bonev, B., Cavalli, G. Organization and function of the 3D genome. Nature Reviews Genetics. 17, 661-678 (2016).
  7. Lupiáñez, D. G., Spielmann, M., Mundlos, S. Breaking TADs: how alterations of chromatin domains result in disease. Trends in Genetics. 32, 225-237 (2016).
  8. Phillips, J. E., Corces, V. G. CTCF: master weaver of the genome. Cell. 137 (7), 1194-1211 (2009).
  9. Hong, S., Kim, D. Computational characterization of chromatin domain boundary-associated genomic elements. Nucleic Acids Research. 45, 10403-10414 (2017).
  10. Zuin, J., et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proceedings of the National Academy of Sciences of the United States of America. 111 (3), 996-1001 (2014).
  11. Guo, Y., et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell. 162, 900-910 (2015).
  12. Lupiáñez, D. G., et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 161, 1012-1025 (2015).
  13. Van-Steensel, B., Furlong, E. E. M. The role of transcription in shaping the spatial organization of the genome. Nature Reviews Molecular Cell Biology. 20, 327-337 (2019).
  14. Merkenschlager, M., Nora, E. P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annual Review of Genomics and Human Genetics. 17 (1), 17-43 (2016).
  15. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R., Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. Elife. 6, 1-10 (2017).
  16. Van Bortle, K., et al. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biology. 15, 82 (2014).
  17. Ramírez, F., et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nature Communications. 9, 189 (2018).
  18. Ulianov, S. V., et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Research. 26, 70-84 (2016).
  19. Rowley, M. J., et al. Evolutionarily conserved principles predict 3D chromatin organization. Molecular Cell. 67, 837-852 (2017).
  20. Gavrilov, A. A., Golov, A. K., Razin, S. V. Actual ligation frequencies in the chromosome conformation capture procedure. PLoS One. 8, 60403 (2013).
  21. Gavrilov, A. A., et al. Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub. Nucleic Acids Research. 41, 3563-3575 (2013).
  22. Nagano, T., et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 502, 59-64 (2013).
  23. Rao, S. S. P., et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 159 (7), 1665-1680 (2014).
  24. Nagano, T., et al. Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biology. 16, 175 (2015).
  25. Arzate-Mejía, R., et al. In situ dissection of domain boundaries affect genome topology and gene transcription in Drosophila. Nature Communications. 11, 894 (2020).
  26. Schoenfelder, S., et al. Promoter capture Hi-C: high-resolution, genome-wide profiling of promoter interactions. Journal of Visualized Experiments. (136), e57320 (2018).
  27. Servant, N., et al. HiC-Pro: an optimized and flexible pipeline for Hi-C processing. Genome Biology. 16, 259 (2015).
  28. Philip, E., Måns, M., Sverker, L., Max, K. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 10, 1093 (2016).
  29. Wingett, S., et al. HiCUP: pipeline for mapping and processing Hi-C data. F1000 Research. 4, 1310 (2015).
  30. Imakaev, M., et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature Methods. 9 (10), 999-1003 (2012).
  31. Akdemir, K. C., Chin, L. HiCPlotter integrates genomic data with interaction matrices. Genome Biolog. 16, 198 (2015).
  32. Ramirez, F., et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nature Communications. 9, 189 (2018).
  33. Ando-Kuri, M., et al. The global and promoter-centric 3D genome organization temporally resolved during a circadian cycle. bioRxiv. , (2020).
  34. Cuellar-Partida, G., et al. Epigenetic priors for identifying active transcription factor binding sites. Bioinformatics. 28 (1), 56-62 (2012).
  35. Zhang, Y., et al. Model-based analysis of ChIP-Seq (MACS). Genome Biology. 9, 137 (2008).
  36. Ong, C. -. T., et al. Poly(ADP-ribosyl)ation regulates insulator function and intrachromosomal interactions in Drosophila. Cell. 155 (1), 148-159 (2013).
  37. Fresán, U., et al. The insulator protein CTCF regulates Drosophila steroidogenesis. Biology Open. 4 (7), 852-857 (2015).
  38. Quinodoz, S., et al. RNA promotes the formation of spatial compartments in the nucleus. Cell. 174, 744-757 (2018).
  39. Olivares-Chauvet, P., et al. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature. 540 (7632), 296-300 (2016).
  40. Beagrie, R., et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature. 543, 519-524 (2017).
  41. Redolfi, J., et al. DamC reveals principles of chromatin folding in vivo without crosslinking and ligation. Nature Structural and Molecular Biology. 26, 471-480 (2019).
  42. Maxwell, R., et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nature Methods. 13, 919-922 (2016).
  43. Gao, X., et al. C-BERST: Defining subnuclear proteomic landscapes at genomic elements with dCas9-APEX2. Nature Methods. 15 (6), 433-436 (2018).
check_url/62106?article_type=t

Play Video

Cite This Article
Esquivel-López, A., Arzate-Mejía, R., Pérez-Molina, R., Furlan-Magaril, M. In-Nucleus Hi-C in Drosophila Cells. J. Vis. Exp. (175), e62106, doi:10.3791/62106 (2021).

View Video