Summary

मंडीबुलर मुरीन मॉडल में ऑर्थोडोन्टिक टूथ मूवमेंट के दौरान पीडीएल कोलेजन फाइबर की 3डी इमेजिंग

Published: April 15, 2021
doi:

Summary

हम चूहों में ऑर्थोडोन्टिक दांत आंदोलन पैदा करने के लिए एक प्रोटोकॉल प्रस्तुत करते हैं और बिना किसी खंड के कोलेजन फाइबर और पीरियोडोन्टल स्नायु के रक्त वाहिकाओं के 3 डी विज़ुअलाइज़ेशन के तरीके हैं।

Abstract

ऑर्थोडोन्टिक दांत आंदोलन बाहरी ताकतों के परिणामस्वरूप नरम और कठोर ऊतक रीमॉडलिंग की एक जटिल जैविक प्रक्रिया है। इन जटिल रीमॉडलिंग प्रक्रियाओं को समझने के लिए, दांत और पीरियोडोन्टल ऊतकों को उनके 3 डी संदर्भ के भीतर अध्ययन करना महत्वपूर्ण है और इसलिए किसी भी खंड और ऊतक कलाकृतियों को कम करना महत्वपूर्ण है। माउस मॉडल का उपयोग अक्सर विकासात्मक और संरचनात्मक जीव विज्ञान में किया जाता है, साथ ही उनके छोटे आकार, उच्च मेटाबोलिक दर, आनुवंशिकी और हैंडलिंग में आसानी के कारण बायोमैकेनिक्स में भी उपयोग किया जाता है। सिद्धांत रूप में यह उन्हें दंत चिकित्सा से संबंधित अध्ययनों के लिए उत्कृष्ट मॉडल भी बनाता है। हालांकि, एक बड़ी बाधा उनके छोटे दांत का आकार, विशेष रूप से मोलर्स है। इस पेपर का उद्देश्य ऑर्थोडोन्टिक दांत आंदोलन पैदा करने के लिए एक कदम प्रोटोकॉल और माउस मंडीबुलर मोलर के पीरियोडोन्टल स्नायु रेशेदार घटक के 3 डी इमेजिंग के लिए दो तरीकों को प्रदान करना है। प्रस्तुत पहली विधि एक माइक्रो सीटी सेटअप पर आधारित है जो ताजा कोलेजन ऊतकों के चरण वृद्धि इमेजिंग को सक्षम करता है। दूसरी विधि एथिल सिनामेट का उपयोग करके एक हड्डी समाशोधन विधि है जो बिना किसी सेक्शनिंग के हड्डी के माध्यम से इमेजिंग को सक्षम बनाती है और अंतर्जात फ्लोरेसेंस को बरकरार रखता है। Flk1– Cre जैसे रिपोर्टर चूहों के साथ इस समाशोधन विधिकासंयोजन; TdTomato ने पीडीएल और अल्वेलार हड्डी में 3 डी वैक्यूलेचर को छवि देने के लिए अपनी तरह का पहला अवसर प्रदान किया।

Introduction

ऑर्थोडोन्टिक टूथ मूवमेंट (ओटीएम) में मूल अंतर्निहित जैविक प्रक्रिया बोन रीमॉडलिंग है। इस रीमॉडलिंग प्रक्रिया के लिए ट्रिगर को पीरियोडोन्टल स्नायु (पीडीएल) जैसे एक्सट्रासेलुलर मैट्रिक्स (ईसीएम) तनाव, परिगलन के साथ-साथ रक्त वाहिका विनाश औरगठन 1,2,3की संरचना में परिवर्तन के लिए जिम्मेदार ठहराया गया है। अल्वेलर बोन रीमॉडलिंग के लिए अन्य संभावित ट्रिगर हड्डी में ऑस्टियोसाइट्स द्वारा बल संवेदन के साथ-साथ अल्वेलर हड्डी के यांत्रिक विरूपण से संबंधित हैं; हालांकि ओटीएम में उनकी भूमिका अभी भी पूरी तरह से स्पष्ट नहीं है4,5.

ओटीएम के दौरान पीडीएल के संरचना-कार्य संबंधों को उजागर करने के उद्देश्य से कई अध्ययनों के बावजूद, एक स्पष्ट कार्यात्मक तंत्र को अभी तक परिभाषित किया जाना है6,7। इसका प्रमुख कारण दो कठोर ऊतकों (सीमेंटम और अल्वियोलर हड्डी) के बीच स्थित एक नरम ऊतक (पीडीएल) के डेटा को वापस लाने में चुनौती है। संरचनात्मक जानकारी एकत्र करने के लिए स्वीकार किए जाते हैं तरीकों आमतौर पर निर्धारण और खंड है कि बाधित और पीडीएल संरचना को संशोधित करने की आवश्यकता है। इसके अलावा, इनमें से अधिकांश तरीके 2D डेटा प्राप्त करते हैं जो भले ही विकृत न हो, केवल आंशिक और स्थानीयकृत जानकारी दें। चूंकि पीडीएल इसकी संरचना और कार्य में एक समान नहीं है, इसलिए एक दृष्टिकोण जो पूरे दांत-पीडीएल-हड्डी परिसर की अक्षुण्ण 3 डी संरचना को संबोधित करता है।

यह पेपर चूहों में ओटीएम पैदा करने के लिए एक विधि और दो तरीकों का वर्णन करेगा जो नमूने के किसी भी खंड के बिना पीडीएल में कोलेजन फाइबर के 3 डी दृश्य को सक्षम करते हैं।

मुरीन मॉडल व्यापक रूप से चिकित्सा, विकासात्मक जीव विज्ञान, दवा वितरण और संरचनात्मक अध्ययन में में वीवो प्रयोगों के लिए उपयोग किया जाता है । वे आनुवंशिक रूप से समाप्त करने या विशिष्ट प्रोटीन और कार्य को बढ़ाने के लिए संशोधित किया जा सकता है; वे तेजी से, दोहराने योग्य और उम्मीद के मुताबिक विकास नियंत्रण प्रदान करते हैं; वे भी अपने छोटे आकार8कारण इमेज करने के लिए आसान कर रहे हैं . उनके कई फायदों के बावजूद, दंत चिकित्सा अनुसंधान में माउस मॉडल का उपयोग अक्सर नहीं किया जाता है, खासकर जब नैदानिक जोड़तोड़ की आवश्यकता होती है, ज्यादातर छोटे आकार के दांतों के कारण। चूहों9,10, 11,कुत्तों12, 13,सूअर14,15,16और बंदरों 17जैसे पशु मॉडल चूहों की तुलना में अधिक बार उपयोग किए जाते हैं। उच्च-रिज़ॉल्यूशन इमेजिंग तकनीकों के हालिया विकास के साथ, ओटीएम में जटिल प्रक्रियाओं को समझने के लिए माउस मॉडल का उपयोग करने के फायदे कई हैं। यह पेपर लगातार बल स्तर के साथ मंडीबल में मोलर दांत का एक मेसियल आंदोलन उत्पन्न करने के लिए एक विधि प्रस्तुत करता है जो हड्डी के रीमॉडलिंग को ट्रिगर करता है। कृंतक में अधिकांश ओटीएम प्रयोग मैक्सिला में किए जाते हैं, क्योंकि मंडली की गतिशीलता और जीभ की उपस्थिति एक और जटिलता स्तर जोड़ती है। हालांकि, 3 डी संरचनात्मक अखंडता वांछित होने पर मंडीबल के कई फायदे हैं। इसे पूरी हड्डी के रूप में आसानी से विच्छेदित किया जा सकता है; कुछ प्रजातियों में इसे रेशेदार सिम्फिसिस के माध्यम से दो हेमी-मंडलियों में अलग किया जा सकता है; यह कॉम्पैक्ट, फ्लैट है और इसमें बिना किसी साइनस रिक्त स्थान के केवल दांत होते हैं। इसके विपरीत, मैक्सिला खोपड़ी का एक हिस्सा है और अन्य अंगों और संरचनाओं से निकटता से संबंधित है, इस प्रकार संबंधित दांतों के साथ अल्वेलर हड्डी को विच्छेदन करने के लिए व्यापक खंड की आवश्यकता होती है।

एक उच्च रिज़ॉल्यूशन माइक्रो-सीटी के अंदर एक लोडिंग प्रणाली के साथ मिलकर घर में आर्द्रता कक्ष का उपयोग करना जो चरण वृद्धि को सक्षम बनाता है, हमने 3 डी में ताजा रेशेदार ऊतकों की कल्पना करने के लिए एक विधि विकसित की, जैसाकि पहले9,18,19,20,21,22, 23वर्णित है। जानवर को बिना किसी धुंधला या निर्धारण के बलिदान करने के तुरंत बाद ताजा ऊतकों को स्कैन किया जाता है, जो ऊतक कलाकृतियों के साथ-साथ बायोमैकेनिकल गुणों के परिवर्तन को कम करता है। इन 3डी डेटा का उपयोग19और वर्णित फाइबर के वितरण और दिशा विश्लेषण के लिए किया जा सकता है ।

यहां प्रस्तुत दूसरी 3 डी पूरी ऊतक इमेजिंग विधि मंडीबल के ऑप्टिकल समाशोधन पर आधारित है जो बिना किसी खंड के हड्डी के माध्यम से पीडीएल फाइबर की इमेजिंग को सक्षम बनाता है। दिलचस्प बात यह भी हड्डी के कोलेजन फाइबर के दृश्य सक्षम बनाता है, लेकिन यह यहां चर्चा नहीं की जाएगी । सामान्य तौर पर, ऊतक समाशोधन के लिए दो तरीके हैं। पहला जलीय-आधारित समाशोधन है जहां नमूना एक सरल विसर्जन, हाइपरहाइड्रेशन या हाइड्रोगेल एम्बेडिंग के माध्यम से 1.4 से अधिक अपवर्तक सूचकांक के साथ एक जलीय समाधान में डूबा हुआ है। हालांकि, यह विधि पारदर्शिता के स्तर के साथ-साथ ऊतक के संरचनात्मक संरक्षण में सीमित है और इसलिए ऊतक के निर्धारण की आवश्यकता होती है। दूसरी विधि जिसमें अत्यधिक पारदर्शी नमूने लिए जाते हैं और निर्धारण की आवश्यकता नहीं होती है, वह है सॉल्वेंट-आधारित समाशोधन विधि24,25. हमने मंडीबुलर नमूनों के लिए एथिल-3-फेनिलोप-2-एनोएट (एथिल सिनामेट, ईसीआई) के आधार पर एक संशोधित सॉल्वेंट-आधारित समाशोधन विधि उत्पन्न की। इस विधि में गैर-विषाक्त खाद्य-ग्रेड समाशोधन एजेंट, न्यूनतम ऊतक सिकुड़न और फ्लोरोसेंट प्रोटीन के संरक्षण का उपयोग करने के फायदे हैं।

Protocol

सभी पशु प्रयोगों की देखभाल और प्रयोगशाला जानवरों के उपयोग और हार्वर्ड विश्वविद्यालय संस्थागत पशु देखभाल और उपयोग समिति (प्रोटोकॉल संख्या ०१८४०) से दिशा निर्देशों के लिए NIH के दिशा निर्देशों के अनुपाल…

Representative Results

यह पेपर बिना किसी सेक्शनिंग के पीडीएल के अंदर कोलेजन फाइबर की 3डी इमेजिंग के लिए ओटीएम के साथ-साथ दो तरीकों का उत्पादन करने की विधि प्रस्तुत करता है। पशु अनुसंधान उद्देश्यों के लिए, जब दांतों का संरेखण ?…

Discussion

आकार, आनुवंशिकी और हैंडलिंग लाभ के कारण चूहों में ओटीएम उत्पन्न करना अत्यधिक वांछित है। मंडीबल का उपयोग ऊतक विच्छेदन के साथ-साथ नमूना तैयारी और इमेजिंग दोनों के मामले में एक आसान हैंडलिंग प्रदान करता …

Divulgations

The authors have nothing to disclose.

Acknowledgements

इस अध्ययन को एनआईएच (एनआईडीसीआर आर00- डीई025053, पीआई:नवेह) द्वारा समर्थित किया गया था। हम बुनियादी ढांचे और समर्थन के लिए जैविक इमेजिंग के लिए हार्वर्ड सेंटर का शुक्रिया अदा करना चाहते हैं । सभी आंकड़े biorender.com के साथ उत्पन्न होते हैं।

Materials

1-mL BD Luer-Lok syringe BD 309628
1X phosphate buffered saline VWR Life Sciences 0780-10L
200 proof ethanol VWR Life Sciences V1016
Aluminum alloy 5019 wire Sigma-aldrich GF15828813 0.08 mm diameter wire, length 100th, temper hard. Used as wire ligature around molar.
Avizo 9.7 Thermo Fisher Scientific N/A Used to analyze microCT scans
Castroviejo Micro Needle Holders Fine Science Tools 12060-01
Clr Plan-Apochromat 20x/1.0,CorrVIS-IR M27 85mm Zeiss N/A Used for second harmonic generation imaging
Cone socket handle, single ended, hand-form G.Hartzell and son 126-CSH3 Handle of the inspection mirror
EC Plan-Neofluar 5x/0.16 Zeiss 440321-9902 Used for light-sheet imaging
Elipar DeepCure-S LED curing light 3M ESPE 76985
Eppendorf safe-lock tubes, 1.5mL Eppendorf 22363204
Ethyl cinnamate, >= 98% Sigma-aldrich W243000-1KG-K
Hypodermic Needle, 27G x 1/2'' BD 305109
Ketathesia 100mg/ml Henry Schein Animal Health NDC:11695-0702-1
KIMWIPES delicate task wipers Kimberly-Clark 21905-026 (VWR Catalog number) Purchased from VWR
LightSheet Z.1 dual illumination microscope system Zeiss LightSheet Z.1/LightSheet 7 Used for lightsheet imaging
LSM 880 NLO multi-photon microscope Zeiss LSM 880 NLO Used for two-photon imaging
MEGAmicro, plane, 5mm dia, SS-Thread Hahnenkratt 6220 Front surface inspectrio mirror
MicroCT machine, MicroXCT-200 Xradia MICRO XCT-200
Mini-Colibri Fine Science Tools 17000-01
PermaFlo Flowable Composite Ultradent 948
Procedure platform N/A N/A Custom-made from lab materials
Routine stereo micscope M80 Leica Micosystems M80
Sentalloy NiTi open coil spring TOMY Inc. A 0.15mm diameter closed NiTi coil with an inner coil diameter of 0.9mm delivers a force of 10g. Similar products can be purchased from Dentsply Sirona. 
T-304 stainless steel ligature wire, 0.009'' diameter Orthodontics SBLW109 0.009''(.23mm) diameter, Soft temper
X-Ject E (Xylazine) 100mg/ml Henry Schein Animal Health NDC:11695-7085-1
Z100 Restorative, A2 shade 3M ESPE 5904A2

References

  1. Li, Y., et al. Orthodontic tooth movement: The biology and clinical implications. The Kaohsiung Journal of Medical Sciences. 34 (4), 207-214 (2018).
  2. Meikle, M. C. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. European Journal of Orthodontics. 28, 221-240 (2006).
  3. Krishnan, V., Davidovitch, Z., molecular, Cellular, molecular, and tissue-level reactions to orthodontic force. American Journal of Orthodontics and Dentofacial Orthopedics. 129 (4), 1-32 (2006).
  4. Shoji-Matsunaga, A., et al. Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Scientific Reports. 7 (1), 8753 (2017).
  5. Oppenheim, A. Tissue changes, particularly of the bone, incident to tooth movement. European Journal of Orthodontics. 29, 2-15 (2007).
  6. Unnam, D., et al. Accelerated Orthodontics-An overview. Journal of Archives of Oral Biologyogy and Craniofacial Research. 3 (1), 4 (2018).
  7. von Bohl, M., Kuijpers-Jagtman, A. M. Hyalinization during orthodontic tooth movement : a systematic review on tissue reactions. European Journal of Orthodontics. 31 (1), 30-36 (2009).
  8. Kirschneck, C., et al. Comparative assessment of mouse models for experimental orthodontic tooth movement. Scientific Reports. 10 (1), 1-12 (2020).
  9. Naveh, G. R. S., Weiner, S. Initial orthodontic tooth movement of a multirooted tooth: a 3D study of a rat molar. Orthodontics & Craniofacial Research. 18 (3), 134-142 (2015).
  10. Nakamura, Y., et al. Time-lapse observation of rat periodontal ligament during function and tooth movement, using microcomputed tomography. European Journal of Orthodontics. 30 (3), 320-326 (2008).
  11. Kawarizadeh, A., Bourauel, C., Jager, A. Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens. European Journal of Orthodontics. 25 (6), 569-578 (2003).
  12. Jónsdóttir, S. H., Giesen, E. B. W., Maltha, J. C. Biomechanical behavior of the periodontal ligament of the beagle dog during the first 5 hours of orthodontic force application. European Journal of Orthodontics. 28, 547 (2006).
  13. Lindhe, J., et al. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clinical Oral Implants Research. 3 (1), 9-16 (1992).
  14. Salamati, A., et al. Functional tooth mobility in young pigs. Journal of Biomechanics. 104, 109716 (2020).
  15. Maria, R., et al. An unusual disordered alveolar bone material in the upper furcation region of minipig mandibles: A 3D hierarchical structural study. Journal of Structural Biology. 206 (1), 128-137 (2019).
  16. Wang, S., et al. The miniature pig: a useful large animal model for dental and orofacial research. Oral Diseases. 10, 1-7 (2007).
  17. Melsen, B. Tissue reaction to orthodontic tooth movement–a new paradigm. European Journal of Orthodontics. 23 (6), 671-681 (2001).
  18. Naveh, G. R. S., et al. Direct MicroCT imaging of non-mineralized connective tissues at high resolution. Connective Tissue Research. 55 (1), 52-60 (2014).
  19. Naveh, G. R. S., et al. Nonuniformity in ligaments is a structural strategy for optimizing functionality. Proceedings of the National Academy of Sciences of the United States of America. 115 (36), 9008 (2018).
  20. Naveh, G. R. S., et al. Tooth periodontal ligament: Direct 3D microCT visualization of the collagen network and how the network changes when the tooth is loaded. Journal of Structural Biology. 181 (2), 108-115 (2013).
  21. Naveh, G. R. S., et al. Tooth movements are guided by specific contact areas between the tooth root and the jaw bone : A dynamic 3D microCT study of the rat molar. Journal of Structural Biology. 17 (2), 477-483 (2012).
  22. Naveh, G. R. S., et al. Tooth-PDL-bone complex: Response to compressive loads encountered during mastication -A review. Archives of Oral Biology. 57 (12), 1575-1584 (2012).
  23. Ben-Zvi, Y., et al. Response of the tooth-periodontal ligament-bone complex to load: A microCT study of the minipig molar. Journal of Structural Biology. 205 (2), 155-162 (2019).
  24. Klingberg, A., et al. Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft Size in Nephritic Kidneys Using Lightsheet Microscopy. Journal of the American Society of Nephrology. 28 (2), 452 (2017).
  25. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162 (2), 246-257 (2015).
  26. Taddei, S. R. d. A., et al. Experimental model of tooth movement in mice: A standardized protocol for studying bone remodeling under compression and tensile strains. Journal of Biomechanics. 45 (16), 2729-2735 (2012).
  27. Nakamura, K., Sahara, N., Deguchi, T. Temporal changes in the distribution and number of macrophage-lineage cells in the periodontal membrane of the rat molar in response to experimental tooth movement. Archives of Oral Biology. 46 (7), 593-607 (2001).
  28. Rygh, P., et al. Activation of the vascular system: A main mediator of periodontal fiber remodeling in orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics. 89 (6), 453-468 (1986).
  29. Nagao, M., et al. Vascular endothelial growth factor in cartilage development and osteoarthritis. Scientific Reports. 7 (1), 13027 (2017).
  30. Licht, A. H., et al. Endothelium-specific Cre recombinase activity in flk-1-Cre transgenic mice. Developmental Dynamics. 229 (2), 312-318 (2004).
  31. Connizzo, B. K., Naveh, G. R. S. In situ AFM-based nanoscale rheology reveals regional non-uniformity in viscoporoelastic mechanical behavior of the murine periodontal ligament. Journal of Biomechanics. 111, 109996 (2020).
  32. Connizzo, B. K., et al. Nonuniformity in Periodontal Ligament: Mechanics and Matrix Composition. Journal of Dental Research. 2, 179-186 (2020).
check_url/fr/62149?article_type=t

Play Video

Citer Cet Article
Xu, H., Lee, A., Sun, L., Naveh, G. R. S. 3D Imaging of PDL Collagen Fibers during Orthodontic Tooth Movement in Mandibular Murine Model. J. Vis. Exp. (170), e62149, doi:10.3791/62149 (2021).

View Video