Summary

הדמיה בזמן לשגות של arborization עצבי באמצעות תיוג וירוסים דליל אדנו הקשורים של אוכלוסיות תאי רשתית ממוקדים גנטית

Published: March 19, 2021
doi:

Summary

כאן, אנו מציגים שיטה לחקירת מורפוגנזה נויריט ברשתית לאחר הלידה על ידי מיקרוסקופיה קונפוקלית לשגות זמן. אנו מתארים גישה לתיוג דליל ורכישה של סוגי תאי רשתית ותהליכים עדינים שלהם באמצעות וקטורים וירוס הקשורים אדנו רקומביננטי המבטאים חלבונים פלואורסצנטיים ממוקדי ממברנה באופן תלוי Cre.

Abstract

גילוי מנגנונים שמעצבים ארבורים דנדריטיים דורש שיטות להמחשה, דימוי וניתוח דנדריטים במהלך הפיתוח. רשתית העכבר היא מערכת מודל רבת עוצמה לחקירה של מנגנונים ספציפיים לסוג התא של מורפוגנזה עצבית וקישוריות. הארגון וההרכב של תת-סוגים ברשתית מוגדרים היטב, וכלים גנטיים זמינים כדי לגשת לסוגים ספציפיים במהלך הפיתוח. סוגי תאי רשתית רבים מגבילים גם את הדנדריטים ו/או האקסונים שלהם לשכבות צרות, מה שמאפשר הדמיה בזמן לשגות. תרביות רשתית העכבר מתאימות היטב להדמיית תאים חיים באמצעות מיקרוסקופיה קונפוקלית או מולטיפוטונית, אך חסרות שיטות המותאמות לדינמיקת דנדריט הדמיה עם רזולוציה זמנית ומבנית. מוצג כאן היא שיטה לתייג ולדמיין בדלילות את ההתפתחות של אוכלוסיות רשתית ספציפיות המסומנות על ידי מערכת Cre-Lox. וירוסים הקשורים לאדנו (AAVs) הזמינים מסחרית המשמשים כאן מבטאים חלבונים פלואורסצנטיים ממוקדי ממברנה באופן תלוי Cre- תלוי. משלוח תוך עיני של AAVs בעכברים יילודים מייצר תיוג פלואורסצנטי של סוגי תאים ממוקדים על ידי 4-5 ימים לאחר ההזרקה (dpi). אותות פלואורסצנטיים ממברנה ניתנים לזיהוי על ידי הדמיה קונפוקלית ולפתור מבני ענף עדינים ודינמיקה. קטעי וידאו באיכות גבוהה המשתרעים על פני 2-4 שעות נרכשים מהדמיית רשתית שטוחה-תושבות עם נוזל שדרתי מלאכותי מחומצן (aCSF). כמו כן מסופק צינור לאחר עיבוד תמונה עבור deconvolution ותיקון סחיפה תלת מימדי (3D). פרוטוקול זה יכול לשמש כדי ללכוד כמה התנהגויות תאיות ברשתית שלמה ולזהות גורמים חדשניים השולטים מורפוגנזה neurite. אסטרטגיות התפתחותיות רבות הנלמדות ברשתית יהיו רלוונטיות להבנת היווצרות מעגלים עצביים במקומות אחרים במערכת העצבים המרכזית.

Introduction

דנדריטים של נוירונים ברשתית יוצרים דפוסים מורכבים, אך ספציפיים, המשפיעים על תפקידם בתוך מעגלים עצביים. ברשתית החולייתנית, סוגים מגוונים של תאי גנגליון רשתית (RGCs) ואינטראורונים תא amacrine נושאים מורפולוגיות דנדריטיות ייחודיות השונות בגודל ארבור, מיקום, אורך ענף, וצפיפות1. במהלך התפתחות לאחר הלידה, RGCs ותאי amacrine להרחיב תהליכים דנדריטיים תוססים לתוך נוירופיל הנקרא שכבת plexiform הפנימית (IPL), שם הם מקבלים קלט תא דו קוטבי המשדר אותות photoreceptor2. כפי שנתפס על ידי הדמיה בזמן-לשגות של אוכלוסיות רשתית שכותרתו פלואורסצנטית בזחלי אפרוחים או דגי זברה, מורפוגנזה דנדריט הוא דינמי מאוד 3,4,5. בתוך ימים, arbors דנדריטי להרחיב, לשפץ, ו ramify כדי לצמצם את שכבות המשנה של IPL, שם הם סינפסה עם שותפים נבחרים. הארבורים מציגים דינמיקה מבנית שונה על פני ההתפתחות, עם שינויים בשיעורים היחסיים של תוספת ענף, נסיגה וייצוב. אמקרין ודנדריטים של RGC מפגינים גם התנהגויות שונות של צמיחה ושיפוץ שעשויות לשקף ארבוריזציה ספציפית לסוג. עם זאת, מחקרים אלה עקבו אחר אוכלוסיות אמקרין או RGC רחבות והתמקדו במיקוד למינארי, שהוא רק היבט אחד של המורפולוגיה.

המנגנונים המייצרים את המגוון המורפולוגי העצום שנצפו על פני תת-סוגים ברשתית אינם מובנים כהלכה. מטרתה של קבוצה זו הייתה לפתח שיטה ללכידת דינמיקה דנדריקית ושיפוץ ארבור של תת-סוגים מוגדרים של רשתית בעכברים. זיהוי מנגנונים ספציפיים לסוג התא של דפוסי דנדריט דורש שיטות כדי לדמיין ולמדוד התנהגויות דנדריט של תאים מעניינים. תרביות אורגנוטיפיות של רשתיות עכבר מתאימות היטב למחקרי הדמיה של תאים חיים באמצעות מיקרוסקופיה קונפוקלית או רב-פוטונית. הרשתיות המתפתחות מנותחות ומורכבות לתוך גולה שטוח שניתן לצלם במשך מספר שעות בחדר הקלטות או לתרבות במשך כמה ימים עם השפעות מוגבלות על המעגלים 6,7. נוירוני רשתית חיים יכולים להיות מסומנים על ידי מגוון טכניקות, כולל מילוי צבע על ידי אלקטרודות, אלקטרופורציה, משלוח ביוליסטי של חלקיקים מצופים בצבעים ליפופיליים או פלסמידים קידוד חלבונים פלואורסצנטיים (למשל, Gene Gun), כמו גם תוויות תאים מקודדים גנטית7,8,9,10 . עם זאת, גישות אלה אינן יעילות עבור הדמיה דנדריט דינמיקה של תת סוגים ספציפיים ברשתית. לדוגמה, שיטות מילוי צבע הן בעלות תפוקה נמוכה ודורשות מנגנון אלקטרופיזיולוגי ותוויות גנטיות נוספות לתאי יעד אמינים של עניין. יתר על כן, אותות הפלואורסצנטיות החזקים בסומא יכולים לטשטש דנדריטים סמוכים.

שיטות העברת גנים ביוליסטיות יכולות לתייג בו זמנית עשרות תאים, אך צעדים הכוללים אספקת חלקיקים בלחץ גבוה ודגרה לילית של רשתית מבודדת עלולים לסכן את הפיזיולוגיה של התא ואת הצמיחה הדנדריטית. מאמר זה מציע כי כלים גנטיים אחרונים ניתן להשתמש כדי ללכוד דינמיקה דנדריט מוקדם עם סוג התא ורזולוציה מבנית, בהתחשב בקריטריונים הניסיוניים הבאים. ראשית, כדי לפתור את הענפים העדינים ואת הפילופודיה השולטים arbors המתפתחים, השיטה צריכה לתייג נוירונים עם חלבונים בהירים, פלואורסצנטיים הממלאים תהליכים בכל הארבור. תיוג הפלואורסצנטיות לא אמור לדעוך עקב הלבנת פוטואורסצנטיות במהלך תקופת ההדמיה. מגוון גרסאות חלבון פלואורסצנטיות נוצרו והושוו להתאמה להדמיית vivo/ex vivo/ex vivo11 המבוססת על בהירות ופוטוסטיות. שנית, החלבונים הפלואורסצנטיים (XFPs) חייבים לבוא לידי ביטוי ברמות גבוהות מספיק בשלב המוקדם ביותר של מורפוגנזה דנדריט, כך שהחלון ההתפתחותי הצר לא יוחמץ. בניתוחים של נקודות זמן סטטיות ברשתית העכבר, התפתחות דנדריט מתרחשת במהלך השבוע הראשון שלאחר הלידה וכוללת שלבים של צמיחה, שיפוץ וייצוב10,12,13,14,15. שלישית, השיטה צריכה להוביל תיוג סלקטיבי או להסתברות מוגברת של תיוג של תת האוכלוסייה העצבית של עניין. רביעית, תיוג של אוכלוסיית המשנה של היעד חייב להיות דליל מספיק, כך שניתן יהיה לזהות את הארבור העצבי כולו ולעקוב אחריו. למרות שתת-סוגים של משמרות המהפכה ואמקרין יכולים להיות מובחנים על ידי המאפיינים המורפולוגיים הבוגרים שלהם ודפוסי ריבוד IPL16,17,18,19,20, האתגר הוא לזהות תת-סוגים במהלך הפיתוח המבוססים על מבנים לא בוגרים. משימה זו מתאפשרת על ידי הרחבת כלים מהונדסים לתייג סוגי תאים ספציפיים ברשתית במהלך הפיתוח.

קווי עכבר מהונדסים ונוק-אין שבהם ביטוי תאי וטמפורלי של חלבונים פלואורסצנטיים או Cre נקבע על ידי אלמנטים רגולטוריים גנטיים נמצאים בשימוש נרחב כדי לחקור סוגי תאי רשתית13,21,22,23. תצפיות מפתח על דפוסים ספציפיים תת-סוג של התפתחות דנדריט הגיעו ממחקרים של רשתות עכבר מהונדסות בנקודות זמן סטטיות10,14,24,25. מערכת Cre-Lox, בפרט, מאפשרת מניפולציה וניטור גנים מעולים של תת-סוגים באמצעות מגוון כתבים, חיישנים ומפעילים אופטוגנטיים תלויי רקומבינאז. כלים אלה הובילו לתגליות של תוכניות מולקולריות ספציפיות לתת-סוג ומאפיינים פונקציונליים העומדים בבסיס הרכבת מעגל רשתית26,27,28,29,30. עם זאת, הם עדיין לא להיות ממונפים ללמוד דינמיקה דנדריט ספציפית תת סוג ברשתית העכבר. תיוג בצפיפות נמוכה ניתן להשיג על ידי שילוב קווי עכבר Cre עם טרנסג’נים שהוצגו על ידי אלקטרופורציה או על ידי AAVs רקומביננטי. אם זמין, טמוקסיפן-inducable Cre קווים או אסטרטגיות גנטיות הצטלבות ניתן להשתמש גם. לבסוף, התא צריך להיות מתויג באופן זעיר פולשני ותמונה באמצעות פרמטרי רכישה כדי לא לסכן את הרקמה או להפריע לתפקוד התאי הנדרש עבור מורפוגנזה דנדריט.

מוצגת כאן שיטה ליישם כלים מהונדסים ומיקרוסקופיה קונפוקלית כדי לחקור את הדינמיקה של דנדריט ברשתית חיה. קווי עכבר מהונדסים Cre שולבו עם וקטורים AAV המבטאים חלבונים פלואורסצנטיים על recombination Cre, המאפשר תיוג דליל של תאי רשתית של עניין. AAVs זמין מסחרית מועברים לרשתית היילוד על ידי זריקות intravitreal. מאמר זה מדגים כי AAVs לייצר ביטוי פלואורסצנטי גבוה באופן משמעותי סוג התא על ידי 4 dpi, המאפשר גישה לנקודות זמן לאחר הלידה. כדי להמחיש גישה זו, cholinergic “starburst” amacrine interneuron תויג על ידי מתן Brainbow AAV בעכברים יילודים המבטאים את כולין acetyltransferase (ChAT)-אתר הכניסה לריבוזום פנימי (IRES)-Cre transgene, אשר פעיל ברשתית שלאחר הלידה המוקדמת31,32. תאי amacrine Starburst לפתח מורפולוגיה ארבור סטריאוטיפית רדיאלית כי הוא מעוצב על ידי דנדריט הימנעות עצמית בתיווך protocadherins מקובצים33,34. מאמר זה מראה כי הרזולוציה של דנדריטים starburst ו filopodia משופרת באופן משמעותי על ידי XFPs לקרום הפלזמה עם תוספת של מוטיב CAAX אשר עובר farnesylation, כפי המשמש Brainbow AAVs31. לבסוף, נקבעו פרוטוקולי הדמיה ופוסט-עיבוד של זמן המייצרים תמונות באיכות גבוהה הניתנות לשחזור דנדריט וכימות מורפומטרי. פרוטוקול זה יכול לשמש כדי לזהות גורמים השולטים מורפוגנזה דנדריט וכדי ללכוד כמה התנהגויות תאיות ברשתית שלמה.

Protocol

הערה: פרוטוקול זה משתרע על פני יומיים עם פרק זמן מינימלי של 4-5 ימים להעברה ויראלית בין ימי ניסוי (איור 1A). ניסויים בבעלי חיים מבוצעים בהתאם להנחיות המועצה הקנדית לטיפול בבעלי חיים לשימוש בבעלי חיים במחקר וטיפול בבעלי חיים במעבדה תחת פרוטוקולים שאושרו על ידי המעבדה לשירותים …

Representative Results

באמצעות הפרוטוקול לעיל, וידאו 3D ברזולוציה גבוהה של דנדריטים תאים starburst פיתוח נרכש, פירוק, ותיקן עבור סחיפה 3D. הקרנות מקסימליות של מטוס Z הופקו כדי ליצור סרטוני דו-ממד לניתוח (סרטון משלים 1, איור 5A). פירוק תלת-ממדי של כל נקודת זמן הגביר את הרזולוציה של תחזיות פילופודיה …

Discussion

וידאו זה מדגים צינור ניסיוני המשתמש בכלים גנטיים קיימים כדי לדמיין דינמיקה של דנדריט של פיתוח נוירונים ברשתית עם הדמיה חיה קונפוקלית. כמו כן הוכחו זריקות תוך עיניות של AAVs תלויי Cre קידוד חלבונים פלואורסצנטיים ממוקדי ממברנה לעכברים יילודים. תאים בודדים של אוכלוסיות ממוקדות גנטית מסומנים ב?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

אנו מודים למדיסון גריי על שעזרה לי כשלא היה לי. מחקר זה נתמך על ידי מענק גילוי NSERC (RGPIN-2016-06128), מלגת סלואן במדעי המוח ויו”ר מחקר קנדה רובד 2 (ל- J.L.L. ). ס. אינג-אסטבס נתמך על ידי תוכנית המחקר למדעי הראייה ומלגות לתואר שני של NSERC- דוקטורט.

Materials

Addgene viral prep #45185-AAV9
Addgene viral prep #45186-AAV9
Dissection tools
Cellulose filter paper Whatman 1001-070
Dumont #5 fine forceps FST 11252-20 Two Dumont #5 forceps are required for retinal micro-dissection
Dumont forceps VWR 82027-426
Fine Scissors FST 14058-09
Mixed cellulose ester membrane (MCE) filter papers, hydrophilic, 0.45 µm pore size Millipore HABG01 300
Petri Dish, 50 × 15 mm VWR 470313-352
Polyethylene disposable transfer pipette VWR 470225-034
Round tip paint brush, size 3/0 Conventional art supply store Two size 3/0 paint brushes (or smaller) are required for retinal flat-mounting
Surgical Scissors FST 14007-14
Vannas Spring Scissors – 2.5 mm Cutting Edge FST 15000-08
Live-imaging incubation system
Chamber polyethylene tubing, PE-160 10' Warner Instruments 64-0755
Dual channel heater controller, Model TC-344C Warner Instruments 64-2401
HC FLUOTAR L 25x/0.95 W VISIR dipping objective Leica 15506374
Heater controller cable Warner Instruments CC-28
Large bath incubation chamber with slice support Warner Instruments RC-27L
MPII Mini-Peristaltic Pump Harvard Apparatus 70-2027
PM-6D Magnetic Heated Platform (incubation chamber heater) Warner Instruments PM-6D
Pump Head Tubing Pieces For MPII Mini-Peristaltic Pump Harvard Apparatus 55-4148
Sample anchor (Harps) Warner Instruments 64-0260 Sample anchor must be compatible with incubation chamber
Sloflo In-line Solution Heater Warner Instruments SF-28
Neonatal Injections
10 µL Microliter Syringe Series 700, Removable Needle Hamilton Company 80314
30 G Hypodermic Needles (0.5 inch) BD PrecisionGlide 305106
4 inch thinwall glass capillary, no filament (1.0 mm outer diameter/0.75 mm)  WPI World Precision Instruments TW100-4
Ethanol 99.8% (to dilute to 70% with double-distilled water [ddH2O]) Sigma-Aldrich V001229 
AAV9.hEF1a.lox.TagBFP. lox.eYFP.lox.WPRE.hGH-InvBYF Penn Vector Core AV-9-PV2453 Addgene Plasmid #45185 
AAV9.hEF1a.lox.mCherry.lox.mTFP
1.lox.WPRE.hGH-InvCheTF
Penn Vector Core AV-9-PV2454 Addgene Plasmid #45186
ChAT-IRES-Cre knock-in transgenic mouse line The Jackson Laboratory 6410
Fast Green FCF Dye content ≥85 % Sigma-Aldrich F7252-25G
Flaming/Brown Micropipette Puller, model P-97 Sutter Instrument Co. P-97
Green tattoo paste Ketchum MFG Co 329A
Phosphate-Buffered Saline, pH 7.4, liquid, sterile-filtered, suitable for cell culture Sigma-Aldrich 806552
Pneumatic PicoPump WPI World Precision Instruments PV-820
Oxygenated artifiial cerebrospinal fluid (aCSF) Reagents
Calcium chloride dihydrate (CaCl2·2H2O) Sigma-Aldrich C7902
Carbogen (5% CO2, 95% O2) AirGas X02OX95C2003102 Supplier may vary depending on region
D-(+)-Glucose Sigma-Aldrich G7021
HEPES, Free Acid Bio Basic HB0264
Hydrochloric acid solution, 1 N Sigma-Aldrich H9892
Magnesium chloride hexahydrate (MgCl2·6H2O) Sigma-Aldrich M2670
pH-Test strips (6.0-7.7) VWR BDH35317.604
Potassium chloride (KCl) Sigma-Aldrich P9541
Sodium chloride (NaCl) Bio Basic DB0483
Sodium phosphate monobasic (NaH2PO4) Sigma-Aldrich RDD007
Software
ImageJ National Institutes of Health (NIH) Open source

References

  1. Lefebvre, J. L., Sanes, J. R., Kay, J. N. Development of dendritic form and function. Annual Review of Cell and Developmental Biology. 31, 741-777 (2015).
  2. Graham, H. K., Duan, X. Molecular mechanisms regulating synaptic specificity and retinal circuit formation. Wiley Interdisciplinary Reviews Developmental biology. 10 (1), 379 (2021).
  3. Godinho, L., et al. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development. 132 (22), 5069-5079 (2005).
  4. Mumm, J. S., et al. In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron. 52 (4), 609-621 (2006).
  5. Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R., Wong, R. O. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. The Journal of Neuroscience. 20 (13), 5024-5036 (2000).
  6. Wei, W., Elstrott, J., Feller, M. B. Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nature Protocols. 5 (7), 1347-1352 (2010).
  7. Morgan, J. L., Wong, R. O. L. Ballistic labeling with fluorescent dyes and indicators. Current Protocols in Neuroscience. 43 (1), 1-10 (2008).
  8. Nickerson, P. E. B., et al. Live imaging and analysis of postnatal mouse retinal development. BMC Developmental Biology. 13, 24 (2013).
  9. Morgan, J. L., Dhingra, A., Vardi, N., Wong, R. O. L. Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nature Neuroscience. 9 (1), 85-92 (2006).
  10. Coombs, J. L., Van Der List, D., Chalupa, L. M. Morphological properties of mouse retinal ganglion cells during postnatal development. The Journal of Comparative Neurology. 503 (6), 803-814 (2007).
  11. Cranfill, P. J., et al. Quantitative assessment of fluorescent proteins. Nature Methods. 13 (7), 557-562 (2016).
  12. Stacy, R. C., Wong, R. O. L. Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina. The Journal of Comparative Neurology. 456 (2), 154-166 (2003).
  13. Kay, J. N., et al. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. The Journal of Neuroscience. 31 (21), 7753-7762 (2011).
  14. Liu, J., Sanes, J. R. Cellular and molecular analysis of dendritic morphogenesis in a retinal cell type that senses color contrast and ventral motion. The Journal of Neuroscience. 37 (50), 12247-12262 (2017).
  15. Diao, L., Sun, W., Deng, Q., He, S. Development of the mouse retina: emerging morphological diversity of the ganglion cells. Journal of Neurobiology. 61 (2), 236-249 (2004).
  16. Coombs, J., vander List, D., Wang, G. Y., Chalupa, L. M. Morphological properties of mouse retinal ganglion cells. Neurosciences. 140 (1), 123-136 (2006).
  17. Sanes, J. R., Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annual Review of Neuroscience. 38, 221-246 (2015).
  18. Sümbül, U., et al. A genetic and computational approach to structurally classify neuronal types. Nature Communications. 5, 3512 (2014).
  19. Lin, B., Masland, R. H. Populations of wide-field amacrine cells in the mouse retina. The Journal of Comparative Neurology. 499 (5), 797-809 (2006).
  20. Macneil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E., Masland, R. H. The shapes and numbers of amacrine cells: Matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. Journal of Comparative Neurology. 413 (2), 305-326 (1999).
  21. Ivanova, E., Hwang, G. S., Pan, Z. H. Characterization of transgenic mouse lines expressing Cre recombinase in the retina. Neurosciences. 165 (1), 233-243 (2010).
  22. Jo, A., Xu, J., Deniz, S., Cherian, S., DeVries, S. H., Zhu, Y. Intersectional strategies for targeting amacrine and ganglion cell types in the mouse retina. Frontiers in Neural Circuits. 12, 66 (2018).
  23. Siegert, S., et al. Genetic address book for retinal cell types. Nature Neuroscience. 12 (9), 1197-1204 (2009).
  24. Kim, I. -. J., Zhang, Y., Meister, M., Sanes, J. R. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. The Journal of Neuroscience. 30 (4), 1452-1462 (2010).
  25. Peng, Y. -. R., Tran, N. M., Krishnaswamy, A., Kostadinov, D., Martersteck, E. M., Sanes, J. R. Satb1 regulates contactin 5 to pattern dendrites of a mammalian retinal ganglion cell. Neuron. 95 (4), 869-883 (2017).
  26. Duan, X., Krishnaswamy, A., Dela Huerta, I., Sanes, J. R. Type II cadherins guide assembly of a direction-selective retinal circuit. Cell. 158 (4), 793-807 (2014).
  27. Ray, T. A., et al. Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact. eLife. 7, 34241 (2018).
  28. Krishnaswamy, A., Yamagata, M., Duan, X., Hong, Y. K., Sanes, J. R. Sidekick 2 directs formation of a retinal circuit that detects differential motion. Nature. 524 (7566), 466-470 (2015).
  29. Caval-Holme, F., Zhang, Y., Feller, M. B. Gap junction coupling shapes the encoding of light in the developing retina. Current Biology. 29 (23), 4024-4035 (2019).
  30. Lucas, J. A., Schmidt, T. M. Cellular properties of intrinsically photosensitive retinal ganglion cells during postnatal development. Neural Development. 14 (1), 8 (2019).
  31. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W., Sanes, J. R. Improved tools for the Brainbow toolbox. Nature Methods. 10 (6), 540-547 (2013).
  32. Rossi, J., et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metabolism. 13 (2), 195-204 (2011).
  33. Lefebvre, J. L., Kostadinov, D., Chen, W. V., Maniatis, T., Sanes, J. R. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature. 488 (7412), 517-521 (2012).
  34. Ing-Esteves, S., et al. Combinatorial effects of alpha- and gamma-protocadherins on neuronal survival and dendritic self-avoidance. The Journal of Neuroscience. 38 (11), 2713-2729 (2018).
  35. Williams, P. R., Morgan, J. L., Kerschensteiner, D., Wong, R. O. L. In vitro imaging of retinal whole mounts. Cold Spring Harbor Protocols. 2013 (1), (2013).
  36. Ramoa, A. S., Campbell, G., Shatz, C. J. Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science. 237 (4814), 522-525 (1987).
  37. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9, 676-682 (2012).
  38. Peng, H., Ruan, Z., Long, F., Simpson, J. H., Myers, E. W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology. 28 (4), 348-353 (2010).
  39. Cuntz, H., Forstner, F., Borst, A., Häusser, M. One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Computational Biology. 6 (8), 1000877 (2010).
  40. Xiao, H., Peng, H. APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics. 29 (11), 1448-1454 (2013).
  41. Nanda, S., et al. Design and implementation of multi-signal and time-varying neural reconstructions. Scientific data. 5, 170207 (2018).
  42. Sherry, D. M., Wang, M. M., Bates, J., Frishman, L. J. Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. The Journal of Comparative Neurology. 465 (4), 480-498 (2003).
  43. Johnson, J., et al. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. The Journal of Neuroscience. 23 (2), 518-529 (2003).
  44. Jüttner, J., et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience. 22 (8), 1345-1356 (2019).
  45. Zincarelli, C., Soltys, S., Rengo, G., Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular Therapy. 16 (6), 1073-1080 (2008).
  46. Petros, T. J., Rebsam, A., Mason, C. A. In utero and ex vivo electroporation for gene expression in mouse retinal ganglion cells. Journal of Visualized Experiments: JoVE. (31), e1333 (2009).
  47. Lye, M. H., Jakobs, T. C., Masland, R. H., Koizumi, A. Organotypic culture of adult rabbit retina. Journal of Visualized Experiments: JoVE. (3), e190 (2007).
  48. Pignatelli, V., Strettoi, E. Bipolar cells of the mouse retina: a gene gun, morphological study. The Journal of Comparative Neurology. 476 (3), 254-266 (2004).
  49. Huckfeldt, R. M., et al. Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions. Nature Neuroscience. 12 (1), 35-43 (2009).
  50. Prahst, C., et al. Mouse retinal cell behaviour in space and time using light sheet fluorescence microscopy. eLife. 9, 49779 (2020).
check_url/fr/62308?article_type=t

Play Video

Citer Cet Article
Ing-Esteves, S., Lefebvre, J. L. Time-Lapse Imaging of Neuronal Arborization using Sparse Adeno-Associated Virus Labeling of Genetically Targeted Retinal Cell Populations. J. Vis. Exp. (169), e62308, doi:10.3791/62308 (2021).

View Video