Summary

分离人原代瓣膜细胞进行体外疾病建模

Published: April 16, 2021
doi:

Summary

该协议描述了在外科主动脉瓣置换手术期间或从尸体组织中提取的人主动脉瓣的收集,以及随后对患者特异性原发性瓣膜内皮和间质细胞的分离、扩增和表征。其中包括有关确保细胞活力和表型特异性所需过程的重要细节。

Abstract

钙化性主动脉瓣疾病(CAVD)存在于近三分之一的老年人口中。主动脉瓣增厚、变硬和钙化会导致主动脉瓣狭窄,并导致心力衰竭和卒中。疾病发病机制是多因素的,炎症、细胞外基质重塑、湍流、机械应力和应变等应激有助于瓣膜内皮细胞和瓣膜间质细胞的成骨分化。然而,驱动健康细胞向钙化细胞成骨转变的精确起始因素尚未完全确定。此外,CAVD诱导的主动脉瓣狭窄目前唯一的治疗方法是主动脉瓣置换术,即切除自体瓣膜(外科主动脉瓣置换术,SAVR)或通过导管插入完全可塌陷的置换瓣膜(经导管主动脉瓣置换术,TAVR)。这些外科手术成本高,风险严重;因此,确定药物发现的新治疗靶点势在必行。为此,本研究开发了一种工作流程,其中手术从患者和供体尸体组织中取出的组织用于创建患者特异性的瓣膜细胞原系,用于体外疾病建模。该协议引入了通常用于器官移植的冷藏解决方案的利用,以减少组织切除和实验室处理之间通常很长的获取时间造成的损害,从而大大稳定了切除组织的细胞。本研究的结果表明,分离的瓣膜细胞在从供体中取出瓣膜后数天以上在培养物中保留其增殖能力以及内皮和间质表型。使用这些材料可以收集对照细胞和CAVD细胞,从中建立对照细胞系和疾病细胞系。

Introduction

钙化性主动脉瓣疾病 (CAVD) 是一种以炎症、纤维化和主动脉瓣叶大钙化为特征的慢性病理学。小叶的进行性重塑和钙化(称为主动脉硬化症)可导致血流受阻(主动脉瓣狭窄),从而导致中风并导致心力衰竭。目前CAVD的唯一治疗方法是手术或经导管主动脉瓣置换术(分别为SAVR和TAVR)。没有非手术选择来阻止或逆转CAVD进展,如果不进行瓣膜置换,死亡率在2-3年内接近50%123。定义驱动这种病理学的潜在机制将确定潜在的新型治疗方法。

在健康的成人中,主动脉瓣叶的厚度约为1毫米,其主要功能是维持血液单向流出左心室4。三个小叶中的每一个都由一层瓣膜内皮细胞(VEC)组成,该细胞排列在小叶的外表面并起到屏障的作用。VEC通过调节通透性、炎症细胞粘附和旁分泌信号来维持瓣膜稳态567。瓣膜间质细胞(VIC)包括瓣叶8内的大部分细胞。VIC在传单中排列成三个不同的层次。这些层被称为脑室、海绵和纤维9。脑室面向左心室,含有胶原和弹性蛋白纤维。中间层,海绵状体,含有高蛋白多糖含量,可在心动周期内提供剪切灵活性。外纤维层位于主动脉侧靠近流出面的位置,富含I型和III型原纤维胶原蛋白,可提供在舒张10,1112期间维持凝结的强度。VIC处于静止状态,然而,炎症,细胞外基质(ECM)重塑和机械应力等因素可能会破坏VIC稳态89,13141516。随着体内平衡的丧失,VIC激活并获得肌成纤维细胞样表型,能够增殖,收缩和分泌重塑细胞外millieu17的蛋白质。活化的VIC可以转变为钙化细胞,这让人联想到间充质干细胞(MSC)分化为成骨细胞15,171819,20,2122232425

钙化似乎在富含胶原蛋白的纤维层中从VEC和VIC的贡献开始,但扩张并侵入小叶的其他层8。因此,很明显,VEC和VICs都对刺激做出反应以上调成骨基因的表达,然而,驱动成骨基因激活的精确事件,以及细胞和小叶细胞外基质之间的复杂相互作用,仍然不清楚。小鼠模型不是研究CAVD发病机制的非遗传驱动因素的理想来源,因为小鼠不会从头发展CAVD26,27因此使用原代人体组织和从这些组织中分离的原代细胞系是必要的。特别是,随着3D细胞培养和类器官建模领域正在扩大,并且很可能成为鼠模型的离体人类替代品,因此获得大量和高质量的这些细胞势在必行。

本方法的目的是共享一个工作流程,该工作流程已经建立了有效分离和生长从人类供体的手术切除瓣膜中获得的 VEC 和 VIC 的条件。以前的研究表明,从猪28和鼠瓣29中成功分离了VEC和VIC,据我们所知,这是第一个描述这些细胞在人体组织中的分离。这里描述的方案适用于人切除瓣膜,并通过引入冷存储溶液的使用,极大地规避和改善了组织切除和实验室处理之间通常很长的采购时间造成的损害,冷储存溶液是一种临床用于器官移植的缓冲溶液,极大地稳定了切除组织的细胞。此处描述的方案还展示了如何确定细胞表型并保证细胞存活的高效率,同时最大限度地减少细胞交叉污染。

Protocol

所有患者样本均来自匹兹堡大学机构审查委员会根据《赫尔辛基宣言》批准的研究的个体。通过器官恢复和教育中心(CORE)获得的尸体组织得到了匹兹堡大学涉及死者的研究和临床培训监督委员会(CORID)的批准。 1. 批准和安全 根据《赫尔辛基宣言》,获得机构审查委员会 (IRB) 的批准或对任何患者样本或尸体组织收集的豁免备忘录。 参加必要的机构培训?…

Representative Results

上述协议概述了处理人类瓣膜组织以及从这些组织中分离和建立活细胞系所需的步骤。主动脉瓣的小叶被处理用于石蜡包埋,快速冷冻以长期储存以进行生化或遗传分析,并消化以分离VEC和VIC(图1)。虽然手术标本可能具有主动脉瓣狭窄的临床诊断,并且可能表现出肉眼可见的重度钙化结节,但主动脉瓣钙化存在于大量老年人(>65岁)中32,并且由于这种?…

Discussion

从人类获得对照和疾病组织对于体外和离体疾病建模至关重要;然而,虽然人们经常谈到弥合长凳到床边之间的差距的挑战,但相反的顺序 – 从手术室到长凳 – 往往同样令人生畏。对于基础科学家获得原始人体组织标本至关重要的是与投资的外科医生科学家合作,该科学家拥有一支由护士、外科技术人员、医师助理、医学生和住院医师以及临床协议经理组成的团队,他们可以招募和同意患者,参与…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们要感谢杰森·多宾斯(Jason Dobbins)对这份手稿的深刻讨论和批判性阅读。我们要感谢器官恢复和教育中心的帮助和支持,并感谢组织捐赠者及其家人使这项研究成为可能。所有患者样本均来自匹兹堡大学机构审查委员会根据《赫尔辛基宣言》批准的研究的个体。通过器官恢复和教育中心(CORE)获得的尸体组织得到了匹兹堡大学涉及死者的研究和临床培训监督委员会(CORID)的批准。

一些用 Biorender.com 创建的图形。

CSH得到了美国国家心肺血液研究所K22 HL117917和R01 HL142932,美国心脏协会20IPA35260111的支持。

Materials

0.45 μm filter Thermo Scientific 7211345 Preparing plate with collagen coating
10 cm cell culture plate Greiner Bio-One 664160 Cell culture/cell line expansion
10 mL serological pipet Fisher 14955234 VEC/VIC isolation, cell culture, cell line expansion
1000 μL filter tips VWR 76322-154 Cell culture/cell line expansion
10XL filter tips VWR 76322-132 Cell culture/cell line expansion
15 mL conical tubes Thermo Scientific 339650 Tissue storage, VIC/VEC isolation
16% paraformaldehyde aqueous solution Electron Microscopy Sciences 15710S Tissue and cell fixative
190 proof ethanol Decon 2801 Disinfection
1x DPBS: no calcium, no magnesium Gibco 14190250 Saline solution. VIC/VEC isolation
1x PBS Fisher BP2944100 Saline solution. Tissue preparation, VIC/VEC isolation
20 μL filter tips VWR 76322-134 Cell culture/cell line expansion
200 proof ethanol Decon 2701 Deparaffinizing tissue samples
2-propanol Fisher A416P 4 Making collagen coated plates
5 mL serological pipet Fisher 14955233 VEC/VIC isolation, cell culture, cell line expansion
50 mL conical tubes Thermo Scientific 339652 Tissue storage, VIC/VEC isolation
60 mm dish GenClone 25-260 VEC isolation
6-well cell culture plate Corning 3516 Cell culture/cell line expansion
Acetic acid, glacial Fisher BP2401 500 Making collagen coated plates
AlexaFluor 488 phalloidin Invitrogen A12379 Fluorescent f-actin counterstain
Belzer UW Cold Storage Transplant Solution Bridge to Life BUW0011L Tissue storage solution
Bovine Serum Albumin, Fraction V – Fatty Acid Free 25g Bioworld 220700233 VEC confirmation with CD31+ Dynabeads
Calponin 1 antibody  Abcam ab46794 Primary antibody (VIC positive stain)
CD31 (PECAM-1) (89C2) Cell Signaling 3528 Primary antibody (VEC positive stain)
CD31+ Dynabeads Invitrogen 11155D VEC confirmation with CD31+ Dynabeads
CDH5 Cell Signaling 2500 Primary antibody (VEC positive stain)
Cell strainer with 0.70 μm pores Corning 431751 VIC isolation
Collagen 1, rat tail protein Gibco A1048301 Making collagen coated plates
Collagenase II Worthington Biochemical Corporation LS004176 Tissue digestion. Tissue preparation, VIC/VEC isolation
Conflikt Ready-to-use Disinfectant Spray Decon 4101 Disinfection
Countess II Automated Cell Counter Invitrogen A27977 Automated cell counter
Countess II reusable slide coverslips Invitrogen 2026h Automated cell counter required slide cover
Coverslips Fisher 125485E Mounting valve samples
Cryogenic vials Olympus Plastics 24-202 Freezing cells/tissue samples
Disinfecting Bleach with CLOROMAX – Concentrated Formula  Clorox N/A Disinfection
DMEM Gibco 10569044 Growth media. VIC expansion
EBM – Endothelial Cell Medium, Basal Medium, Phenol Red free 500 Lonza Walkersville CC3129 Growth media. VEC expansion
EGM-2 Endothelial Cell Medium-2 – 1 kit SingleQuot Kit Lonza Walkersville CC4176 Growth media supplement. VEC expansion
EVOS FL Microscope Life Technologies Model Number: AME3300 Fluorescent imaging
EVOS XL Microscope Life Technologies AMEX1000 Visualizing cells during cell line expansion
Fetal Bovine Serum – Premium Select R&D Systems S11550 VIC expansion
Fine scissors Fine Science Tools 14088-10 Tissue preparation, VIC/VEC isolation
Fisherbrand Cell Scrapers Fisher 08-100-241 VIC expansion
Fungizone Gibco 15290-026 Antifungal: Tissue preparation, VIC/VEC isolation
Gentamicin Gibco 15710-064 Antibiotic: Tissue preparation, VIC/VEC isolation
Glass slides Globe Scientific Inc 1358L mounting valve samples
Goat anti-Mouse 488 Invitrogen A11001 Fluorescent secondary Antibody
Goat anti-Mouse 594 Invitrogen A11005 Fluorescent secondary Antibody
Goat anti-Rabbit 488 Invitrogen A11008 Fluorescent secondary Antibody
Goat anti-Rabbit 594 Invitrogen A11012 Fluorescent secondary Antibody
Invitrogen Countess II FL Reusable Slide Invitrogen A25750 Automated cell counter required slide
Invitrogen NucBlue Fixed Cell ReadyProbes Reagent (DAPI) Invitrogen R37606 Fluorescent nucleus counterstain
LM-HyCryo-STEM – 2X Cryopreservation media for stem cells HyClone Laboratories, Inc. SR30002 Frozen cell storage
Mounting Medium Fisher Chemical Permount SP15-100 Mounting valve samples
Mr. Frosty freezing container Nalgene 51000001 Container for controlled sample freezing
Mycoplasma-ExS Spray PromoCell PK-CC91-5051 Disinfection
Penicillin-Streptomycin Gibco 15140163 Antibiotic. VIC expansion
Plasmocin Invivogen ANTMPT Anti-mycoplasma. VIC/VEC isolation and expansion
SM22a antibody Abcam ab14106 Primary antibody (VIC positive stain)
Sstandard pattern scissors Fine Science Tools 14001-14 Tissue preparation, VIC/VEC isolation
Sterile cotton swab Puritan 25806 10WC VEC isolation
Swingsette human tissue cassette Simport Scientific M515-2 Tissue embedding container
Taylor Forceps (17cm) Fine Science Tools 11016-17 Tissue preparation, VIC/VEC isolation
Trypan Blue Solution, 0.4% Gibco 15250061 cell counting solution
TrypLE Express Enzyme Gibco 12604021 Splitting VIC/VECs
Von Kossa kit Polysciences 246331 Staining paraffin sections of tissues for calcification
von Willebrand factor antibody Abcam ab68545 Primary antibody (VEC positive stain)
Xylenes Fisher Chemical X3S-4 Deparaffinizing tissue samples
αSMA antibody Abcam ab7817 Primary antibody (VIC positive stain)

References

  1. Lamprea-Montealegre, J. A., Otto, C. M. Health behaviors and calcific aortic valve disease. Journal of Amercan Heart Association. 7, (2018).
  2. Nishimura, R. A., et al. AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation. 129, 2440-2492 (2014).
  3. Clark, M. A., et al. Clinical and economic outcomes after surgical aortic valve replacement in Medicare patients. Risk Manag Healthc Policy. 5, 117-126 (2012).
  4. Misfeld, M., Sievers, H. H. Heart valve macro- and microstructure. Philosophical Transactions of Royal Society of London B Biological Sciences. 362, 1421-1436 (2007).
  5. Anstine, L. J., Bobba, C., Ghadiali, S., Lincoln, J. Growth and maturation of heart valves leads to changes in endothelial cell distribution, impaired function, decreased metabolism and reduced cell proliferation. Journal of Molecular and Cell Cardiology. 100, 72-82 (2016).
  6. Mahler, G. J., Butcher, J. T. Inflammatory regulation of valvular remodeling: the good(?), the bad, and the ugly. Internation Journal of Inflammation. 2011, 721419 (2011).
  7. Gould, S. T., Matherly, E. E., Smith, J. N., Heistad, D. D., Anseth, K. S. The role of valvular endothelial cell paracrine signaling and matrix elasticity on valvular interstitial cell activation. Biomaterials. 35, 3596-3606 (2014).
  8. Leopold, J. A. Cellular mechanisms of aortic valve calcification. Circulation: Cardiovascular Intervention. 5, 605-614 (2012).
  9. Chen, J. H., Simmons, C. A. Cell-matrix interactions in the pathobiology of calcific aortic valve disease: Critical roles for matricellular, matricrine, and matrix mechanics cues. Circulation Research. 108, 1510-1524 (2011).
  10. Sacks, M. S., Schoen, F. J., Mayer, J. E. Bioengineering challenges for heart valve tissue engineering. Annual Review of Biomedical Engineering. 11, 289-313 (2009).
  11. Taylor, P. M., Batten, P., Brand, N. J., Thomas, P. S., Yacoub, M. H. The cardiac valve interstitial cell. Internation Journal of Biochemistry and Cell Biology. 35, 113-118 (2003).
  12. Taylor, P. M., Allen, S. P., Yacoub, M. H. Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. Journal of Heart Valve Disease. 9, 150-158 (2000).
  13. Rajamannan, N. M., et al. Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation. 124, 1783-1791 (2011).
  14. Wang, H., Leinwand, L. A., Anseth, K. S. Cardiac valve cells and their microenvironment–insights from in vitro studies. Nature Reviews Cardiology. 11, 715-727 (2014).
  15. Yutzey, K. E., et al. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 34, 2387-2393 (2014).
  16. Raddatz, M. A., Madhur, M. S., Merryman, W. D. Adaptive immune cells in calcific aortic valve disease. American Journal of Physiology-Heart and Circulation Physiology. 317, 141-155 (2019).
  17. Liu, A. C., Joag, V. R., Gotlieb, A. I. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. American Journal of Pathology. 171, 1407-1418 (2007).
  18. Liu, A. C., Gotlieb, A. I. Characterization of cell motility in single heart valve interstitial cells in vitro. Histology and Histopathology. 22, 873-882 (2007).
  19. Yip, C. Y., Chen, J. H., Zhao, R., Simmons, C. A. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arteriosclerosis, Thrombosis, and Vascular Biology. 29, 936-942 (2009).
  20. Song, R., Fullerton, D. A., Ao, L., Zhao, K. S., Meng, X. An epigenetic regulatory loop controls pro-osteogenic activation by TGF-beta1 or bone morphogenetic protein 2 in human aortic valve interstitial cells. Journal of Biological Chemistry. 292, 8657-8666 (2017).
  21. Xu, M. H., et al. Absence of the adenosine A2A receptor confers pulmonary arterial hypertension and increased pulmonary vascular remodeling in mice. Journal of Vascular Research. 48, 171-183 (2011).
  22. Jian, B., Narula, N., Li, Q. Y., Mohler, E. R., Levy, R. J. Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Annals of Thoracic Surgery. 75, 465 (2003).
  23. Bogdanova, M., et al. Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties. Science Reports. 9, 12934 (2019).
  24. Gendron, N., et al. Human aortic valve interstitial cells display proangiogenic properties during calcific aortic valve disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 41 (1), 415-429 (2021).
  25. Wirrig, E. E., Yutzey, K. E. Conserved transcriptional regulatory mechanisms in aortic valve development and disease. Arteriosclerosis, Thrombosis and Vascular Biology. 34, 737-741 (2014).
  26. Honda, S., et al. A novel mouse model of aortic valve stenosis induced by direct wire injury. Arteriosclerosis, Thrombosis and Vascular Biology. 34, 270-278 (2014).
  27. Sider, K. L., Blaser, M. C., Simmons, C. A. Animal models of calcific aortic valve disease. International Journal of Inflammation. 2011, 364310 (2011).
  28. Gould, R. A., Butcher, J. T. Isolation of valvular endothelial cells. Journal of Visualized Experiments. (46), e2158 (2010).
  29. Miller, L. J., Lincoln, J. Isolation of murine valve endothelial cells. Journal of Visualized Experiments. (90), e51860 (2014).
  30. Selig, J. I., et al. Impact of hyperinsulinemia and hyperglycemia on valvular interstitial cells – A link between aortic heart valve degeneration and type 2 diabetes. Biochimica Biophysica Acta Molecular Basis of Disease. 1865, 2526-2537 (2019).
  31. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Paraffin embedding tissue samples for sectioning. CSH Protocols. 2008, (2008).
  32. Martinsson, A., et al. Temporal trends in the incidence and prognosis of aortic stenosis: A nationwide study of the Swedish population. Circulation. 131, 988-994 (2015).
  33. Rabkin-Aikawa, E., Farber, M., Aikawa, M., Schoen, F. J. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. Journal of Heart Valve Diseases. 13, 841-847 (2004).
  34. St Hilaire, C., Carroll, S. H., Chen, H., Ravid, K. Mechanisms of induction of adenosine receptor genes and its functional significance. Journal of Cell Physiology. 218, 35-44 (2009).
  35. Xu, K., et al. Cell-type transcriptome atlas of human aortic valves reveal cell heterogeneity and endothelial to mesenchymal transition involved in calcific aortic valve disease. Arteriosclerosis, Thrombosis and Vascular Biology. 40, 2910-2921 (2020).
check_url/fr/62439?article_type=t

Play Video

Citer Cet Article
Cuevas, R. A., Chu, C. C., Moorhead III, W. J., Wong, R., Sultan, I., St. Hilaire, C. Isolation of Human Primary Valve Cells for In vitro Disease Modeling. J. Vis. Exp. (170), e62439, doi:10.3791/62439 (2021).

View Video