Summary

椎间盘从胚胎发育到退化的光学切片和可视化

Published: July 08, 2021
doi:

Summary

我们提出了一种使用光学切片方法研究椎间盘肛门纤维化中空间软骨细胞组织的方法。

Abstract

椎间盘(IVD)变性是腰痛的主要原因,并且对受影响的个体造成高度损害。为了解码椎间盘变性并能够开发再生方法,对IVD的细胞生物学的透彻理解至关重要。这种生物学中仍未得到解答的一个方面是细胞如何在生理状态和变性过程中在空间上排列的问题。IVD的生物学特性及其可用性使这种组织难以分析。本研究调查了肛门纤维中从早期胚胎发育到终末期变性的空间软骨细胞组织。应用光学切片方法(Apotome)以牛胚胎组织作为动物模型和从接受脊柱手术的患者那里获得的人盘组织进行高分辨率染色分析。由于早期胚胎牛盘中的软骨细胞密度非常高,细胞数量在妊娠,生长和成熟期间减少。在人盘中,细胞密度的增加伴随着组织变性的进展。正如已经在关节软骨中证明的那样,集群形成代表了晚期椎间盘变性的特征。

Introduction

椎间盘(IVD)是一种基于软骨的结构,乍一看,它在生物化学和细胞结构方面类似于关节软骨1。事实上,关节软骨的IVD变性和骨关节炎(OA)的特征都是由于软骨磨损,软骨下囊肿和骨赘形成以及软骨下硬化症2,3而导致的关节空间变窄。尽管有这些看似相似的东西,但两种组织的结构和功能作用还是不同的。虽然关节软骨的基质主要由拱廊形成的II型胶原蛋白网络组成,但IVD由三种不同类型的组织组成:中心富含II型胶原的髓核承担轴向负荷并将其传递到密集排列的圆形胶原I型纤维环中,称为肛门纤维。它们的功能是吸收富含蛋白聚糖和水的原子核所接收的平移轴向压力及其拉伸纵向纤维强度。在每个细胞核和肛门的顶部和底部,透明软骨终板形成与相邻椎骨4的连接(图1)。

在关节软骨中,可以找到四种不同的空间软骨细胞模式:成对,弦,双弦,小分别大簇5,6,7(图2)。这种模式的变化与OA的发病和进展有关8,9。空间软骨细胞组织也表明了软骨的直接功能特性,即其刚度,强调了这种基于图像的分级方法的功能相关性10,11。这些模式还可以用已经存在的临床可用技术12来识别。由于IVD和关节软骨之间的相似性,可以假设IVD中也存在特征性软骨细胞模式。簇的形成是一种现象,在退化的IVD13,14中也观察到。

当试图分析IVD中的空间细胞组织时,有必要克服在研究关节软骨时不存在的几个技术难题:

首先,组织本身的加工比主要由II型胶原蛋白组成的均质透明软骨更具挑战性。IVD的主要纤维成分是I型胶原蛋白,这使得产生薄的组织学切片变得更加困难。虽然在透明关节软骨中,由于组织的”玻璃状”性质,甚至厚厚的切片也很容易被分析,IVD的I型胶原蛋白网络在光学上是高度不可穿透的。因此,强烈的背景噪声是IVD组织学中的常见问题。穿透这种光学致密组织的一种快速而廉价的方法是使用光学切片装置,例如通过Apotome。在这样的Apotome中,在常规荧光显微镜的照明途径中插入网格。在网格的前面放置一个平面平行的玻璃板。这会来回倾斜,从而将图像中的网格投影到三个不同的位置。对于每个 z 位置,将创建并叠加三个具有投影网格的原始图像。通过特殊的软件,可以计算出失焦的光。基本原则是,如果网格可见,则该信息处于焦点中,如果不是,则被视为失焦。使用这种技术,可以在合理的时间内获得聚焦良好的高分辨率图像。

其次,组织很难从人类捐赠者那里获得。当进行全膝关节置换术时,可以获得关节的整个表面,以便在手术过程中进行进一步分析。虽然椎间关节的骨关节炎也是整个关节的疾病,但软骨的质量仍然存在强烈的局灶性差异,通常关节的某些区域仍然完好无损,例如由于该区域的负荷减少。这种情况在IVD中有所不同,其中手术通常仅在椎间盘被整体破坏时进行。当从手术室从人类供体获取组织时,组织也是高度碎片化的,在进行进一步分析之前,有必要将组织正确分配到IVD的三种软骨类型之一。因此,为了能够对更大的组织切片进行更详细的分析并研究IVD的胚胎发育,因此,选择动物模型生物是必要的。

在选择这样的模型生物体时,重要的是要有一个在解剖结构和尺寸,机械负荷,当前细胞群以及组织组成方面与人类椎间盘相媲美的系统。为了本文所提出的技术的目的,我们建议使用牛腰椎间盘组织:人椎间盘的一个关键特性导致其低再生潜力,即在细胞核成熟期间,赱骨细胞的损失。然而,在许多模型生物中,可以检测到其整个生命周期的赭骨细胞。大多数失去赱枝细胞的少数动物,如绵羊,山羊或嗜软骨病的狗,其IVD比人类椎间盘小得多。只有腰椎牛椎间盘的行散盘直径与人类IVDs15相当。

导致早期椎间盘退化的一个关键因素是机械负荷过大。站立的牛在腰椎中的椎间盘内压力约为0.8 MPa,脊柱水平对齐。令人惊讶的是,这些压力与直立人脊柱(0.5 MPa)报告的腰椎椎间盘内压力相当15,16。此外,牛盘中的水和蛋白聚糖的含量与年轻人类的IVD相当17。因此,尽管四足动物的运动片段的实际运动模式可能与两足动物不同,但在总负荷和椎间盘特征方面,牛比其他已建立的IVD动物模型(如绵羊和狗)更接近人类生物学。

在该协议中,我们提出了一种技术,如何从空间软骨细胞组织的角度分析IVD从早期胚胎发育到终末期变性的变化。

Protocol

为了分析胚胎发育和成熟,使用牛盘。为了评估IVD的变性,分析了人类样本。 从图宾根大学医院骨科和图宾根BG创伤中心接受腰椎间盘退行性变,椎间盘脱垂或脊柱创伤手术的患者那里获得了人IVD组织。在研究开始之前,已获得伦理委员会的全面批准(项目编号244/2013BO2)。在参与之前,所有患者都收到了书面知情同意书。这些方法是根据批准的指南进行的。 <p class="jove_co…

Representative Results

使用马赛克图像,可以清楚地识别IVD的结构及其在肛门和较软的细胞核中的致密胶原纤维网络(图4)。在胚胎发育过程中可以观察到细胞密度的连续下降(图5)。虽然在IVD发展的早期阶段,可以发现牛肛裂纤维中的细胞密度为11,435个细胞/mm²,牛髓核中的细胞密度为17,426个细胞/mm²,但这些数字在出生前迅速下降到1,011个细胞/mm²(牛肛门纤维)和…

Discussion

使用荧光显微镜,加上镶嵌成像和光学切片,我们评估了软骨细胞在整个发育,成熟和变性过程中腰椎IVD肛门中的空间排列。虽然退行性组织可以从接受椎间盘变性手术的患者身上收获,但胚胎期和成熟期的分析需要使用模型生物(牛)。在早期胚胎发育期间,肛门中观察到高细胞密度。在进一步的发育过程中,可以观察到出生后生长和成熟细胞密度的显着降低。在具有晚期椎间盘变性的人体组?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢原始出版物的合著者的帮助和支持。我们感谢夏洛特·艾玛·班贝格(Charlotte Emma Bamberger)帮助获取了apotome图像。

Materials

Amphotericin B Merck KGaA,  Germany A2942
Adhesion Microscope Slides SuperFrost Plus R. Langenbrinck, Germany 03-0060
ApoTome Carl Zeiss MicroImaging GmbH, Germany 462000115
AxioVision Rel. 4.8 with Modul MosaiX Carl Zeiss MicroImaging GmbH, Germany
CellMask Actin Tracking Stain Thermo Fischer Scientific, US A57249
Cryostat Leica Biosystems, US CM3050S
DAPI Thermo Fischer Scientific, US D1306
Dulbecco's modified Eagle's medium (DMEM) Gibco, Life Technologies, Germany 41966052
Ethylenediaminetetraacetic acid Sigma-Aldrich, US 60004
Fluorescence Miscoscope – Axio Observer Z1 with Axio Cam MR3 and Colibri Carl Zeiss MicroImaging GmbH, Germany 3834000604
Formaldehyde Merck KGaA,  Germany 104002
Image J 1.53a, with Cell counter plugin National Insittute of Health (NIH), US
Invitrogen Alexa Fluor 568 Phalloidin Thermo Fischer Scientific, US A12380
Microscopic Cover Glasses R. Langenbrinck, Germany 01-1818/1
PAP Pen Liquid Blocker Science Sevices  GmbH, Germany N71310
Penicillin-Streptomycin Sigma-Aldrich, US P4333
Phosphate buffered saline Sigma-Aldrich,US P5119
Scalpel pf medical AG, Germany 2023-01
Tissue-tek O.C.T. Compound Sakura Finetek, Netherlands SA6255012

References

  1. Urban, J. P. G., Roberts, S. Degeneration of the intervertebral disc. Arthritis Research and Therapy. 5 (3), 120-130 (2003).
  2. Gupta, K. B., Duryea, J., Weissman, B. N. Radiographic evaluation of osteoarthritis. Radiologic Clinics of North America. 42 (1), 11-41 (2004).
  3. Pye, S. R., et al. Lumbar disc degeneration: association between osteophytes, end-plate sclerosis and disc space narrowing. Annals of the Rheumatic Diseases. 66 (3), 330-333 (2007).
  4. Humzah, M. D., Soames, R. W. Human intervertebral disc: structure and function. The Anatomical Record. 220 (4), 337-356 (1988).
  5. Schumacher, B. L., Su, J. L., Lindley, K. M., Kuettner, K. E., Cole, A. A. Horizontally oriented clusters of multiple chondrons in the superficial zone of ankle, but not knee articular cartilage. The Anatomical Record. 266 (4), 241-248 (2002).
  6. Rolauffs, B., Williams, J. M., Grodzinsky, A. J., Kuettner, K. E., Cole, A. A. Distinct horizontal patterns in the spatial organization of superficial zone chondrocytes of human joints. Journal of Structural Biology. 162 (2), 335-344 (2008).
  7. Felka, T., et al. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology. Osteoarthritis and Cartilage. 24 (7), 1200-1209 (2016).
  8. Rolauffs, B., et al. Onset of preclinical osteoarthritis: the angular spatial organization permits early diagnosis. Arthritis and Rheumatism. 63 (6), 1637-1647 (2011).
  9. Aicher, W. K., Rolauffs, B. The spatial organization of joint surface chondrocytes: review of its potential roles in tissue functioning, disease and early, preclinical diagnosis of osteoarthritis. Annals of the Rheumatic Diseases. 73 (4), 645-653 (2014).
  10. Danalache, M., Jacobi, L. F., Schwitalle, M., Hofmann, U. K. Assessment of biomechanical properties of the extracellular and pericellular matrix and their interconnection throughout the course of osteoarthritis. Journal of Biomechanics. 97, 109409 (2019).
  11. Danalache, M., et al. Changes in stiffness and biochemical composition of the pericellular matrix as a function of spatial chondrocyte organization in osteoarthritic cartilage. Osteoarthritis and Cartilage. 27 (5), 823-832 (2019).
  12. Tschaikowsky, M., et al. Proof-of-concept for the detection of early osteoarthritis pathology by clinically applicable endomicroscopy and quantitative AI-supported optical biopsy. Osteoarthritis and Cartilage. 29 (2), 269-279 (2021).
  13. Ciapetti, G., et al. Ex vivo observation of human intervertebral disc tissue and cells isolated from degenerated intervertebral discs. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society and the European Section of the Cervical Spine Research Society. 21, 10 (2012).
  14. Johnson, W. E., Eisenstein, S. M., Roberts, S. Cell cluster formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connective Tissue Research. 42 (3), 197-207 (2001).
  15. Buttermann, G. R., Beaubien, B. P., Saeger, L. C. Mature runt cow lumbar intradiscal pressures and motion segment biomechanics. The Spine Journal: Official Journal of the North American Spine Society. 9 (2), 105-114 (2009).
  16. Wilke, H. J., Neef, P., Caimi, M., Hoogland, T., Claes, L. E. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine. 24 (8), 755-762 (1999).
  17. Demers, C. N., Antoniou, J., Mwale, F. Value and limitations of using the bovine tail as a model for the human lumbar spine. Spine. 29 (24), 2793-2799 (2004).
  18. Hofmann, U. K., et al. Chondrocyte death after mechanically overloading degenerated human intervertebral disk explants is associated with a structurally impaired pericellular matrix. Journal of Tissue Engineering and Regenerative Medicine. 12 (9), 2000-2010 (2018).
  19. Pfirrmann, C. W., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 26 (17), 1873-1878 (2001).
  20. Habermehl, K. H. . Die Altersbestimmung bei Haus- und Labortieren. , (1975).
  21. Danalache, M., Erler, A. L., Wolfgart, J. M., Schwitalle, M., Hofmann, U. K. Biochemical changes of the pericellular matrix and spatial chondrocyte organization-Two highly interconnected hallmarks of osteoarthritis. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society. 38 (10), 2170-2180 (2020).
  22. Bonnaire, F. C., et al. The intervertebral disc from embryonic development to disc degeneration: insights into spatial cellular organization. The Spine Journal: Official Journal of the North American Spine Society. (21), 00198 (2021).
  23. Vieira-Neto, A., Galvao, K. N., Thatcher, W. W., Santos, J. E. P. Association among gestation length and health, production, and reproduction in Holstein cows and implications for their offspring. Journal of Dairy Science. 100 (4), 3166-3181 (2017).
  24. Ott, A. Die Entwicklung des schwarzbunten Niederungsrindes von der Geburt bis zum 5. Lebensjahr mit variationsstatistischen Untersuchungen einer Population solcher Rinder von der Geburt bis zum 3. Lebensjahr. Zeitschrift für Tierzüchtung und Züchtungsbiologie. 45 (3), 259-308 (1940).
  25. Urban, J. P. G., Roberts, S., Ralphs, J. R. The Nucleus of the Intervertebral Disc from Development to Degeneration1. American Zoologist. 40 (1), 53-61 (2000).
  26. Risbud, M. V., Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nature Reviews. Rheumatology. 10 (1), 44-56 (2014).
  27. Iatridis, J. C., Michalek, A. J., Purmessur, D., Korecki, C. L. Localized intervertebral disc injury leads to organ level changes in structure, cellularity, and biosynthesis. Cell and Molecular Bioengineering. 2 (3), 437-447 (2009).
  28. Torre, O. M., Mroz, V., Bartelstein, M. K., Huang, A. H., Iatridis, J. C. Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies. Annals of the New York Academy of Sciences. 1442 (1), 61-78 (2019).
  29. Rolauffs, B., et al. Proliferative remodeling of the spatial organization of human superficial chondrocytes distant from focal early osteoarthritis. Arthritis and Rheumatism. 62 (2), 489-498 (2010).
  30. Johnson, W. E., Roberts, S. Rumours of my death may have been greatly exaggerated’: a brief review of cell death in human intervertebral disc disease and implications for cell transplantation therapy. Biochemical Society Transactions. 35, 680-682 (2007).
  31. Roberts, S. Disc morphology in health and disease. Biochemical Society Transactions. 30, 864-869 (2002).
  32. Lama, P., Kulkarni, J., Tamang, B. The role of cell clusters in intervertebral disc degeneration and its relevance behind repair. Spine Research. 03, 15 (2017).
  33. Sharp, C. A., Roberts, S., Evans, H., Brown, S. J. Disc cell clusters in pathological human intervertebral discs are associated with increased stress protein immunostaining. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society and the European Section of the Cervical Spine Research Society. 18 (11), 1587-1594 (2009).
  34. Freemont, A. J. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology. 48 (1), 5-10 (2009).
  35. Müllers, Y., et al. Quantitative analysis of F-actin alterations in adherent human mesenchymal stem cells: Influence of slow-freezing and vitrification-based cryopreservation. PLoS One. 14 (1), 0211382 (2019).
  36. McCann, M. R., Séguin, C. A. Notochord cells in intervertebral disc development and degeneration. Journal of Developmental Biology. 4 (1), 3 (2016).
check_url/fr/62594?article_type=t

Play Video

Citer Cet Article
Bonnaire, F. C., Feierabend, M., Wolfgart, J. M., Breuer, W., Walter, C., Hofmann, U. K., Danalache, M. Optical Sectioning and Visualization of the Intervertebral Disc from Embryonic Development to Degeneration. J. Vis. Exp. (173), e62594, doi:10.3791/62594 (2021).

View Video