Summary

一种优化的O9-1/水凝胶系统,用于研究神经嵴细胞中的机械信号

Published: August 13, 2021
doi:

Summary

这里描述了详细的分步方案,用于使用多能O9-1神经嵴细胞和不同硬度的聚丙烯酰胺水凝胶 在体外 研究机械信号。

Abstract

神经嵴细胞(NCCs)是脊椎动物胚胎多能细胞,可以迁移和分化成各种细胞类型,从而产生各种器官和组织。组织刚度产生机械力,这是一种在NCC分化中起关键作用的物理线索;然而,机制仍不清楚。这里描述的方法为优化生成具有不同刚度的聚丙烯酰胺水凝胶,精确测量这种刚度以及评估O9-1细胞中机械信号的影响提供了详细信息,O9-1细胞是一种模拟 体内 NCC的NCC系。

使用原子力显微镜(AFM)测量水凝胶刚度,并相应地指示不同的刚度水平。在不同硬度的水凝胶上培养的O9-1 NCCs表现出不同的细胞形态和应激纤维的基因表达,这表明机械信号变化引起的生物学效应不同。此外,这确定了改变水凝胶刚度导致有效的 体外 系统,通过改变凝胶刚度和分析NCC中的分子和遗传调节来操纵机械信号传导.O9-1 NCCs可以在相应分化介质的影响下分化成广泛的细胞类型,并且便于 在体外操纵化学信号。因此,这种 体外 系统是研究机械信号传导在NCC中的作用及其与化学信号相互作用的有力工具,这将有助于研究人员更好地了解神经嵴发育和疾病的分子和遗传机制。

Introduction

神经嵴细胞(NCCs)是脊椎动物胚胎发生过程中的一组干细胞,具有显着的迁移能力,有助于各种器官和组织的发育。NCCs可以分化成不同的细胞类型,包括感觉神经元,软骨,骨骼,黑素细胞和平滑肌细胞,这取决于轴向起源的位置和NCC1,2的局部环境引导。由于能够分化成多种细胞类型,在神经嵴(NC)发育的任何阶段引起失调的遗传异常都可能导致许多先天性疾病2。例如,NCC形成,迁移和发展过程中的扰动导致发育障碍,统称为神经性心脏病1,3。这些疾病的范围从由于NCC形成失败而导致的颅面缺陷,例如Treacher Collins综合征,到由于NCC转移性迁移能力引起的各种癌症的发展,如黑色素瘤3,4,5,6所示。在过去的几十年里,研究人员对NCC在发育和疾病中的作用和机制有了非凡的发现,大多数发现都集中在化学信号7,8上。最近,机械信号已被证明在NCC开发9,10中发挥了关键但知之甚少的作用。

NCC的环境线索在其发育过程中起着至关重要的作用,包括调节NCC分化成各种细胞类型。环境线索,例如物理线索,影响关键行为和细胞反应,如功能多样化。机械转导允许细胞感知并响应这些线索,以维持各种生物过程2。NCCs被邻近细胞和不同的底物包围,例如细胞外基质(ECM),其可以产生机械刺激以维持体内平衡并通过命运决定,增殖和凋亡来适应变化11。机械转导从发生机械细胞外刺激的感觉成分的质膜开始,导致细胞12的细胞内调节。整合素、局灶粘附和质膜的连接将机械信号(如剪切力、应力和周围基质的刚度)传递到化学信号中,以产生细胞响应12。化学信号从质膜到最终细胞调节的传递是通过不同的信号通路进行的,以最终确定生物体的重要过程,例如分化。

一些研究表明,来自底物刚度的机械信号在细胞分化中起作用13,14。例如,先前的研究表明,在软底物上生长的间充质干细胞(MSCs)具有类似于脑组织的刚度(在0.1-1.0 kPa的范围内)导致神经元细胞分化15,16。然而,当在模仿肌肉硬度的8-17 kPa底物上生长时,更多的MSCs分化成肌细胞样细胞,而当MSCs在坚硬的底物(25-40 kPa)上培养时观察到成骨细胞样分化15,16。机械信号通路中的不规则和异常突出了机甲转导的重要性,这些异常和异常可能导致严重的发育缺陷和疾病,包括癌症,心血管疾病和骨质疏松症17,18,19。在癌症中,正常的乳房组织是柔软的,并且在僵硬和致密的乳房组织中患乳腺癌的风险增加,这种环境更类似于乳腺肿瘤15。有了这些知识,可以通过体外系统对底物刚度的简单操作来研究机械信号传导对NCC发展的影响,为理解NC相关疾病进展和病因的基本原理提供了进一步的优势和可能性。

为了研究机械信号对NCC的影响,我们基于先前发表的方法的优化和对NCC对不同机械信号的响应的评估,建立了一个有效的NCC体外系统20,21。为改变水凝胶刚度制备和评估机械信号传导在NCC中的影响提供了详细的方案。为了实现这一点,使用O9-1 NCCs作为NC模型来研究对刚性水凝胶与软水凝胶的反应和变化。O9-1 NCCs是在第8.5天从小鼠胚胎(E)中分离出来的稳定NC细胞系。O9-1 NCCs在体内模仿NCC,因为它们可以在定义的分化培养基22中分化成各种NC衍生的细胞类型。为了研究NCC的机械信号传导,从不同浓度的丙烯酰胺和双丙烯酰胺溶液中制备具有可调弹性的基质基质,以达到所需的刚度,与生物底物刚度20,21,23相关。为了优化NCC,特别是O9-1细胞的基质底物的条件,对先前发表的方案20进行了修改。该协议中的一项更改是在37°C下将水凝胶在胶原I中孵育,用0.2%乙酸稀释而不是50mM HEPES过夜。乙酸的低pH值导致均匀分布和更高的胶原I掺入,从而允许ECM蛋白24更均匀地附着。此外,在将水凝胶储存在培养箱中之前,分别在磷酸盐缓冲盐水(PBS)中以10%和5%的浓度使用马血清和胎牛血清(FBS)的组合。马血清被用作FBS的额外补充,因为它能够在10%25的浓度下促进细胞增殖和分化。

使用这种方法,通过ECM蛋白质包衣(例如胶原蛋白I)模拟生物环境,为NCC的生长和存活创造准确的体外环境20,21。通过原子力显微镜(AFM)定量分析所制备的水凝胶的刚度,原子力显微镜是描述弹性模量26的众所周知的技术。为了研究不同硬度水平对NCC的影响,在水凝胶上培养和制备野生型O9-1细胞,用于免疫荧光(IF)染色,以对抗丝状肌动蛋白(F-actin),以显示细胞粘附和形态的差异响应底物刚度的变化。利用这种体外系统,研究人员将能够研究机械信号在NCC中的作用及其与其他化学信号的相互作用,以更深入地了解NCC与机械信号之间的关系。

Protocol

1. 水凝胶制备 注意:所有步骤必须在细胞培养罩中执行,该培养罩在使用前已用乙醇和紫外线(UV)灭菌消毒,以保持无菌性。工具,如镊子和移液器,必须喷洒乙醇。缓冲液也必须经过无菌过滤。 氨基硅烷镀膜玻璃盖玻片的制备 将所需数量的玻璃盖玻片放在一块实验室擦拭布上。注:准备额外的 3-4 个盖玻片,以确保有足够的备用电源,因为它们很容易断?…

Representative Results

通过AFM和赫兹模型进行水凝胶制备和刚度评估在这里,提供了详细的方案,通过调节丙烯酰胺和双丙烯酰胺的比例来生成不同刚度的聚丙烯酰胺水凝胶。然而,由于缺乏ECM蛋白,聚丙烯酰胺水凝胶尚未准备好粘附细胞。因此,作为连接剂的磺胺-SANPAH与水凝胶共价结合并与ECM蛋白的伯胺反应,以允许ECM蛋白在UV活化后通过磺基-SANPAH中的 N-羟基琥珀酰亚胺酯粘附到水凝胶表面。…

Discussion

本研究的目标是提供一种有效和高效的 体外 系统,以更好地了解机械信号对NCC的影响。除了遵循上述分步方案外,研究人员还需要记住,O9-1 NCC的细胞培养受到用于制备水凝胶的玻璃盖玻片类型的影响。例如,有人指出,接种在特定类型的玻璃盖玻片上的细胞(见 材料表)存活并增殖良好,而接种在其他类型的玻璃盖玻片上的培养细胞显示出更多的细胞死亡。此外,严格遵循…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢德克萨斯大学健康科学中心原子力显微镜-UT核心设施的操作员Ana-Maria Zaske博士在该项目中为AFM提供的专业知识。我们还感谢美国国立卫生研究院的资金来源(K01DE026561,R03DE025873,R01DE029014,R56HL142704和R01HL142704给J. Wang)。

Materials

12 mm #1 Corning 0211 Glass Coverslip Chemglass Life Sciences CLS-1763-012
2% Bis-Acrylamide Sigma Aldrich M1533
24-well plate Greiner Bio-one 662165
25 mm #1 Corning 0211 Glass Coverslip Chemglass Life Sciences CLS-1763-025
3-aminopropyl triethoxysilane (APTS) Sigma Aldrich A3648
4-well cell culture plate Thermo Scientific 179830
4% Paraformaldehyde Sigma Aldrich J61899-AP
40% Acrylamide Sigma Aldrich A4058
50% glutaraldehyde Sigma Aldrich G7651
6-well cell culture plate Greiner Bio-one 657160
AFM cantilever (spherical bead) Novascan
AFM software Catalyst NanoScope Model: 8.15 SR3R1
Alexa Fluor 488 Phalloidin Thermo Fisher A12379
Ammonium Persulfate (APS) Sigma Aldrich 248614 Powder
anti-AP-2α Antibody Santa Cruz sc-12726
anti-Vinculin antibody Abcam ab129002
Atomic Force Microscopy (AFM) Bioscope Catalyst Bruker Corporation
Collagen type I (100mg) Corning 354236
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) Thermo Fisher D1306
Dichloromethylsilane (DCMS) Sigma Aldrich 440272
Donkey serum Sigma Aldrich D9663
Dulbecco's Modified Eagle Medium (DMEM) Corning 10-017-CV
Fetal bovine serum (FBS) Corning 35-010-CV
Fluorescence microscope Leica Model DMi8
Fluoromount-G mounting medium SouthernBiotech 0100-35
HEPES Sigma Aldrich H3375 Powder
Horse serum Corning 35-030-CI
iScript Reverse Transcription Supermix Bio-Rad 1708841
Penicillin-Streptomycin antibiotic Thermo Fisher 15140148
RNeasy micro kit Qiagen 74004
Sterile 1x PBS Hyclone SH30256.02
Sterile deionized water Hardy Diagnostics U284
sulfo-SANPAH Thermo Fisher 22589
SYBR green Applied Biosystems 4472908
TEMED Sigma Aldrich T9281
Triton X-100 Sigma Aldrich X100
Tween 20 Sigma Aldrich P9416

References

  1. Mehrotra, P., Tseropoulos, G., Bronner, M. E., Andreadis, S. T. Adult tissue-derived neural crest-like stem cells: Sources, regulatory networks, and translational potential. Stem Cells Translational Medicine. 9 (3), 328-341 (2020).
  2. Liu, J. A., Cheung, M. Neural crest stem cells and their potential therapeutic applications. Biologie du développement. 419 (2), 199-216 (2016).
  3. Watt, K. E. N., Trainor, P. A., Trainor, P. A. Neurocristopathies: the etiology and pathogenesis of disorders arising from defects in neural crest cell development. Neural Crest Cells-Evolution, Development and Disease. , 361-394 (2014).
  4. Lavelle, C. L. B. . Applied oral physiology. , (1988).
  5. Chin, L. The genetics of malignant melanoma: lessons from mouse and man. Nature Reviews Cancer. 3 (8), 559-570 (2003).
  6. Hindley, C. J., et al. The Hippo pathway member YAP enhances human neural crest cell fate and migration. Scientific Reports. 6 (1), 1-9 (2016).
  7. Wang, Q., et al. Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate. Disease Models & Mechanisms. 12 (10), (2019).
  8. Rocha, M., Singh, N., Ahsan, K., Beiriger, A., Prince, V. E. Neural crest development: insights from the zebrafish. Developmental Dynamics. 249 (1), 88-111 (2020).
  9. Barriga, E. H., Franze, K., Charras, G., Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature. 554 (7693), 523-527 (2018).
  10. Weber, G. F., Bjerke, M. A., DeSimone, D. W. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Developmental Cell. 22 (1), 104-115 (2012).
  11. Mason, D. E., et al. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology. 218 (4), 1369-1389 (2019).
  12. Dupont, S., et al. Role of YAP/TAZ in mechanotransduction. Nature. 474 (7350), 179-183 (2011).
  13. Lu, Y. -. B., et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proceedings of the National Academy of Sciences of the United States of America. 103 (47), 17759-17764 (2006).
  14. Georges, P. C., Miller, W. J., Meaney, D. F., Sawyer, E. S., Janmey, P. A. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophysical Journal. 90 (8), 3012-3018 (2006).
  15. Janmey, P. A., Miller, R. T. Mechanisms of mechanical signaling in development and disease. Journal of Cell Science. 124 (1), 9-18 (2011).
  16. Engler, A., Sweeney, H., Discher, D., Schwarzbauer, J. E. Extracellular matrix elasticity directs stem cell differentiation. Journal of Musculoskeletal and Neuronal Interactions. 7 (4), 335 (2007).
  17. Paszek, M. J., et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 8 (3), 241-254 (2005).
  18. Engler, A. J., et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. Journal of Cell Science. 121 (22), 3794-3802 (2008).
  19. Robling, A. G., Turner, C. H. Mechanical signaling for bone modeling and remodeling. Critical Reviews in Eukaryotic Gene Expression. 19 (4), 319-338 (2009).
  20. Tse, J. R., Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Current Protocols in Cell Biology. , (2010).
  21. Cretu, A., Castagnino, P., Assoian, R. Studying the effects of matrix stiffness on cellular function using acrylamide-based hydrogels. Journal of Visualized Experiments: JoVE. (42), e2089 (2010).
  22. Ishii, M., et al. A stable cranial neural crest cell line from mouse. Stem Cells and Development. 21 (17), 3069-3080 (2012).
  23. Engler, A., et al. Substrate compliance versus ligand density in cell on gel responses. Biophysical Journal. 86 (1), 617-628 (2004).
  24. Stanton, A. E., Tong, X., Yang, F. Varying solvent type modulates collagen coating and stem cell mechanotransduction on hydrogel substrates. APL Bioengineering. 3 (3), 036108 (2019).
  25. Fedoroff, S., Hall, C. Effect of horse serum on neural cell differentiation in tissue culture. In vitro. 15 (8), 641-648 (1979).
  26. Huth, S., Sindt, S., Selhuber-Unkel, C. Automated analysis of soft hydrogel microindentation: Impact of various indentation parameters on the measurement of Young’s modulus. PLoS One. 14 (8), 0220281 (2019).
  27. Mitchell, P. J., Timmons, P. M., Hébert, J. M., Rigby, P., Tjian, R. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes & Development. 5 (1), 105-119 (1991).
  28. Wegner, M. Neural crest diversification and specification: transcriptional control of Schwann Cell differentiation. Encyclopedia of Neuroscience. , 153-158 (2010).
  29. Park, J. S., et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials. 32 (16), 3921-3930 (2011).
  30. Sun, M., et al. Effects of matrix stiffness on the morphology, adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells. International Journal of Medical Sciences. 15 (3), 257 (2018).
  31. Burridge, K., Guilluy, C. Focal adhesions, stress fibers and mechanical tension. Experimental Cell Research. 343 (1), 14-20 (2016).
  32. Burridge, K. Focal adhesions: a personal perspective on a half century of progress. The FEBS Journal. 284 (20), 3355-3361 (2017).
  33. Zhou, C., et al. Compliant substratum modulates vinculin expression in focal adhesion plaques in skeletal cells. International Journal of Oral Science. 11 (2), 1-9 (2019).
  34. Fernández, J. L. R., Geiger, B., Salomon, D., Ben-Ze’ev, A. Overexpression of vinculin suppresses cell motility in BALB/c 3T3 cells. Cell Motility and the Cytoskeleton. 22 (2), 127-134 (1992).
  35. Coll, J., et al. Targeted disruption of vinculin genes in F9 and embryonic stem cells changes cell morphology, adhesion, and locomotion. Proceedings of the National Academy of Sciences of the United States of America. 92 (20), 9161-9165 (1995).
  36. Saunders, R. M., et al. Role of vinculin in regulating focal adhesion turnover. European Journal of Cell Biology. 85 (6), 487-500 (2006).
  37. Kuo, J. -. C. Focal adhesions function as a mechanosensor. Progress in Molecular Biology and Translational Science. 126, 55-73 (2014).
  38. Nguyen, B. H., Ishii, M., Maxson, R. E., Wang, J. Culturing and manipulation of O9-1 neural crest cells. Journal of Visualized Experiments: JoVE. (140), e58346 (2018).
  39. Kolewe, K. W., Zhu, J., Mako, N. R., Nonnenmann, S. S., Schiffman, J. D. Bacterial adhesion is affected by the thickness and stiffness of poly (ethylene glycol) hydrogels. ACS Applied Materials & Interfaces. 10 (3), 2275-2281 (2018).
  40. Lin, Y. -. C., et al. Mechanosensing of substrate thickness. Physical Review E. 82 (4), 041918 (2010).
  41. Mullen, C. A., Vaughan, T. J., Billiar, K. L., McNamara, L. M. The effect of substrate stiffness, thickness, and cross-linking density on osteogenic cell behavior. Biophysical Journal. 108 (7), 1604-1612 (2015).
  42. Tusan, C. G., et al. Collective cell behavior in mechanosensing of substrate thickness. Biophysical Journal. 114 (11), 2743-2755 (2018).
  43. McBurney, M. W., Jones-Villeneuve, E. M., Edwards, M. K., Anderson, P. J. Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature. 299 (5879), 165-167 (1982).
  44. Hasegawa, A., Shirayoshi, Y. P19 cells overexpressing Lhx1 differentiate into the definitive endoderm by recapitulating an embryonic developmental pathway. Yonago Acta Medica. 58 (1), 15 (2015).
  45. Wells, R. G. Tissue mechanics and fibrosis. Biochimica et Biophysica Acta. 1832 (7), 884-890 (2013).
  46. Gavara, N. A beginner’s guide to atomic force microscopy probing for cell mechanics. Microscopy Research and Technique. 80 (1), 75-84 (2017).
  47. Butler, J. P., Tolic-Nørrelykke, I. M., Fabry, B., Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. American Journal of Physiology. Cell Physiology. 282 (3), 595-605 (2002).
  48. Leong, W. S., et al. Thickness sensing of hMSCs on collagen gel directs stem cell fate. Biochemical and Biophysical Research Communications. 401 (2), 287-292 (2010).
  49. Caliari, S. R., Burdick, J. A. A practical guide to hydrogels for cell culture. Nature Methods. 13 (5), 405-414 (2016).
  50. Funaki, M., Janmey, P. A. Technologies to engineer cell substrate mechanics in hydrogels. Biology and Engineering of Stem Cell Niches. , 363-373 (2017).
check_url/fr/62693?article_type=t

Play Video

Citer Cet Article
Le, T. P., Zhao, X., Erhardt, S., Gu, J., Wang, H., Findley, T. O., Wang, J. An Optimized O9-1/Hydrogel System for Studying Mechanical Signals in Neural Crest Cells. J. Vis. Exp. (174), e62693, doi:10.3791/62693 (2021).

View Video