Summary

Optimization of the Retinal Vein Occlusion Mouse Model to Limit Variability

Published: August 06, 2021
doi:

Summary

Here, we describe an optimized protocol for retinal vein occlusion using rose bengal and a laser-guided retinal imaging microscope system with recommendations to maximize its reproducibility in genetically modified strains.

Abstract

Mouse models of retinal vein occlusion (RVO) are often used in ophthalmology to study hypoxic-ischemic injury in the neural retina. In this report, a detailed method pointing out critical steps is provided with recommendations for optimization to achieve consistently successful occlusion rates across different genetically modified mouse strains. The RVO mouse model consists primarily of the intravenous administration of a photosensitizer dye followed by laser photocoagulation using a retinal imaging microscope attached to an ophthalmic guided laser. Three variables were identified as determinants of occlusion consistency. By adjusting the wait time after rose bengal administration and balancing the baseline and experimental laser output, the variability across experiments can be limited and a higher success rate of occlusions achieved. This method can be used to study retinal diseases that are characterized by retinal edema and hypoxic-ischemic injury. Additionally, as this model induces vascular injury, it can also be applied to study the neurovasculature, neuronal death, and inflammation.

Introduction

Retinal vein occlusion (RVO) is a common retinal vascular disease that affected approximately 28 million people worldwide in 20151. RVO leads to vision decline and loss in working aged adults and elders, representing an ongoing sight-threatening disease estimated to increase over the proximate decade. Some of the distinct pathologies of RVO include hypoxic-ischemic injury, retinal edema, inflammation, and neuronal loss2. Currently, the first line of treatment for this disorder is through the administration of vascular endothelial growth factor (VEGF) inhibitors. While anti-VEGF treatment has helped ameliorate retinal edema, many patients still face vision decline3. To further understand the pathophysiology of this disease and to test potential new lines of treatment, there is a need to constitute a functional and detailed RVO mouse model protocol for different mouse strains.

Mouse models have been developed implementing the same laser device used in human patients, paired with an imaging system scaled to the correct size for a mouse. This mouse model of RVO was first reported in 20074 and further established by Ebneter and others4,5. Eventually, the model was optimized by Fuma et al. to replicate key clinical manifestations of RVO such as retinal edema6. Since the model was first reported, many studies have employed it using the administration of a photosensitizer dye followed by photocoagulation of major retinal veins with a laser. However, the amount and type of the dye that is administered, laser power, and time of exposure vary significantly across studies that have used this method. These differences can often lead to increased variability in the model, making it difficult to replicate. To date, there are no published studies with specific details about potential avenues for its optimization.

This report presents a detailed methodology of the RVO mouse model in the C57BL/6J strain and a tamoxifen-inducible endothelial caspase-9 knockout (iEC Casp9KO) strain with a C57BL/6J background and of relevance to RVO pathology as a reference strain for a genetically modified mouse. A previous study had shown that non-apoptotic activation of endothelial caspase-9 instigates retinal edema and promotes neuronal death8. Experience using this strain helped determine and provide insight towards potential modifications to tailor the RVO mouse model, which can be applicable to other genetically modified strains.

Protocol

This protocol follows the Association for Research in Vision and Ophthalmology (ARVO) statement for the use of animals in ophthalmic and vision research. Rodent experiments were approved and monitored by the Institutional Animal Care and Use Committee (IACUC) of Columbia University. NOTE: All experiments used two-month-old male mice that weighed approximately 20 g. 1. Preparation and administration of tamoxifen for inducible genetic ablation of floxed genes <p cla…

Representative Results

The RVO mouse model aims to successfully achieve occlusions in the retinal veins, leading to hypoxic-ischemic injury, breakdown of the blood retinal barrier, neuronal death, and retinal edema8. Figure 1 shows a timeline of steps to ensure reproducibility, a schematic of the experimental design, and outlines steps that can be further optimized depending on the experimental questions. The three main steps that can be modified are the waiting time after rose bengal admin…

Discussion

The mouse RVO model provides an avenue to further understand RVO pathology and to test potential therapeutics. While the mouse RVO model is widely used in the field, there is a need for a current detailed protocol of the model that addresses its variability and describes the optimization of the model. Here, we provide a guide with examples from experience on what can be altered to get the most consistent results across a cohort of experimental animals and provide reliable data.

The two most es…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by the National Science Foundation Graduate Research Fellowship Program (NSF-GRFP) DGE – 1644869 (to CCO), the National Eye Institute (NEI) 5T32EY013933 (to AMP) and the National Institute on Aging (NIA) R21AG063012 (to CMT). 

Materials

Carprofen Rimadyl NADA #141-199 keep at 4 °C
Corn Oil Sigma-Aldrich C8267
Fiber Patch Cable Thor Labs M14L02
GenTeal Alcon 00658 06401
Ketamine Hydrochloride Henry Schein NDC: 11695-0702-1
Lasercheck Coherent 1098293
Phenylephrine Akorn NDCL174478-201-15
Phoneix Micron IV with Meridian,  StreamPix, and OCT modules Phoenix Technology Group
Proparacaine Hydrochloride Akorn NDC: 17478-263-12 keep at 4 °C
Refresh Allergan 94170
Rose Bengal Sigma-Aldrich 330000-5G
Tamoxifen Sigma-Aldrich T5648-5G light-sensitive
Tropicamide Akorn NDC: 174478-102-12
Xylazine Akorn NDCL 59399-110-20

References

  1. Song, P., Xu, Y., Zha, M., Zhang, Y., Rudan, I. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors. Journal of Global Health. 9 (1), 010427 (2019).
  2. Ehlers, J. P., Fekrat, S. Retinal vein occlusion: beyond the acute event. Survey of Ophthalmology. 56 (4), 281-299 (2011).
  3. Iftikhar, M., et al. Loss of peak vision in retinal vein occlusion patients treated for macular edema. American Journal of Ophthalmology. 205, 17-26 (2019).
  4. Zhang, H., et al. Development of a new mouse model of branch retinal vein occlusion and retinal neovascularization. Japanese Journal of Ophthalmology. 51 (4), 251-257 (2007).
  5. Ebneter, A., Agca, C., Dysli, C., Zinkernagel, M. S. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion. PLoS One. 10 (3), 0119046 (2015).
  6. Fuma, S., et al. A pharmacological approach in newly established retinal vein occlusion model. Scientific Reports. 7, 43509 (2017).
  7. Zhang, C., et al. Activation of microglia and chemokines in light-induced retinal degeneration. Molecular Vision. 11, 887-895 (2005).
  8. Avrutsky, M. I., et al. Endothelial activation of caspase-9 promotes neurovascular injury in retinal vein occlusion. Nature Communications. 11 (1), 3173 (2020).
  9. Nicholson, L., et al. Diagnostic accuracy of disorganization of the retinal inner layers in detecting macular capillary non-perfusion in diabetic retinopathy. Clinical & Experimental Ophthalmology. 43 (8), 735-741 (2015).
  10. Moein, H. R., et al. Optical coherence tomography angiography to detect macular capillary ischemia in patients with inner retinal changes after resolved diabetic macular edema. Retina. 38 (12), 2277-2284 (2018).
  11. Hirabayashi, K., et al. Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system. American Journal of Pathology. 189 (2), 449-466 (2019).
  12. Martin, G., Conrad, D., Cakir, B., Schlunck, G., Agostini, H. T. Gene expression profiling in a mouse model of retinal vein occlusion induced by laser treatment reveals a predominant inflammatory and tissue damage response. PLoS One. 13 (3), 0191338 (2018).
  13. Drechsler, F., et al. Effect of intravitreal anti-vascular endothelial growth factor treatment on the retinal gene expression in acute experimental central retinal vein occlusion. Ophthalmic Research. 47 (3), 157-162 (2012).
  14. Genevois, O., et al. Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats. Investigative Ophthalmology & Visual Science. 45 (2), 594-600 (2004).
  15. Khayat, M., Lois, N., Williams, M., Stitt, A. W. Animal models of retinal vein occlusion. Investigative Ophthalmology & Visual Science. 58 (14), 6175-6192 (2017).
  16. Nguyen, V. P., Li, Y., Zhang, W., Wang, X., Paulus, Y. M. High-resolution multimodal photoacoustic microscopy and optical coherence tomography image-guided laser induced branch retinal vein occlusion in living rabbits. Scientific Reports. 9 (1), 10560 (2019).
  17. Sayyed, S. A. A. R., Beedri, N. I., Kadam, V. S., Pathan, H. M. Rose Bengal sensitized bilayered photoanode of nano-crystalline TiO2-CeO2 for dye-sensitized solar cell application. Applied Nanoscience. 6 (6), 875-881 (2015).
  18. Emmart, E. W. Observations on the absorption spectra of fluorescein, fluorescein derivatives and conjugates. Archives of Biochemistry and Biophysics. 73 (1), 1-8 (1958).
  19. Yu, L., Liu, Z., Liu, S., Hu, X., Liu, L. Fading spectrophotometric method for the determination of polyvinylpyrrolidone with eosin Y. Chinese Journal of Chemistry. 27 (8), 1505-1509 (2009).
  20. MacDonald, D. The ABCs of RVO: a review of retinal venous occlusion. Clinical & Experimental Optometry. 97 (4), 311-323 (2014).
  21. Stahl, A., et al. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. American Journal of Pathology. 177 (6), 2715-2723 (2010).
  22. LaVail, M. M., Gorrin, G. M., Repaci, M. A. Strain differences in sensitivity to light-induced photoreceptor degeneration in albino mice. Current Eye Research. 6 (6), 825-834 (1987).
  23. Jeffery, G. The albino retina: an abnormality that provides insight into normal retinal development. Trends in Neurosciences. 20 (4), 165-169 (1997).
  24. Kinnear, P. E., Jay, B., Witkop, C. J. Albinism. Survey of Ophthalmology. 30 (2), 75-101 (1985).
  25. Stahl, A., et al. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. American Journal of Pathology. 177 (6), 2715-2723 (2010).
check_url/fr/62980?article_type=t

Play Video

Citer Cet Article
Colón Ortiz, C., Potenski, A., Lawson, J. M., Smart, J., Troy, C. M. Optimization of the Retinal Vein Occlusion Mouse Model to Limit Variability. J. Vis. Exp. (174), e62980, doi:10.3791/62980 (2021).

View Video