Summary

具有可调纳米尺度尺寸和成分的锰铁氧体簇的稳定水悬浮液

Published: February 05, 2022
doi:

Summary

我们报告了锰铁氧体簇(MFC)的一锅水热合成,可对材料尺寸和成分进行独立控制。磁分离允许快速纯化,而使用磺化聚合物的表面功能化可确保材料在生物相关介质中不聚集。由此产生的产品非常适合生物医学应用。

Abstract

锰铁氧体簇(MFC)是数十至数百个初级纳米晶体的球形组件,其磁性在各种应用中都很有价值。在这里,我们描述了如何在水热工艺中形成这些材料,该过程允许独立控制产品簇尺寸(从30到120nm)和所得材料的锰含量。酒精反应介质中加入的水总量和锰与铁前驱体的比例等参数是实现多种类型的MFC纳米级产品的重要因素。快速纯化方法使用磁分离来回收材料,使磁性纳米材料的克数生产非常有效。我们克服了磁性纳米材料聚集的挑战,将高电荷的磺酸盐聚合物应用于这些纳米材料的表面,产生胶体稳定的MFC,即使在高盐度环境中也保持非聚集性。这些非聚集、均匀和可调的材料是生物医学和环境应用的优秀前瞻性材料。

Introduction

与纯氧化铁相比,在适当的条件下,在氧化铁晶格中加入锰作为掺杂剂可以增加材料在高外加磁场下的磁化。因此,锰铁氧体(MnxFe3-xO4)纳米颗粒由于其高饱和磁化,对外部磁场的强烈响应和低细胞毒性而成为非常理想的磁性纳米材料12345。单域纳米晶体以及这些纳米晶体的簇(称为多域粒子)已在各种生物医学应用中进行了研究,包括药物递送,用于癌症治疗的磁热疗和磁共振成像(MRI)678。例如,Hyeon小组在2017年使用单结构域锰铁氧体纳米颗粒作为Fenton催化剂来诱导癌症缺氧,并利用该材料的T2contrast进行MRI跟踪9。令人惊讶的是,鉴于这些和其他对铁氧体材料的积极研究,与纯氧化铁(Fe3O4)纳米材料相比,几乎没有体内演示,也没有报道在人类中的应用910

将铁氧体纳米材料的特征转化为临床时面临的一个巨大挑战是产生均匀的、非聚集的纳米级簇11121314。虽然传统的单域纳米晶体合成方法已经发展良好,但这项工作中感兴趣的多域簇不容易以统一和受控的方式生产1516。此外,铁氧体组成通常是非化学计量的,并且不仅仅与前驱体的起始浓度相关,这可能进一步模糊这些材料的系统结构功能表征9121317。在这里,我们通过展示一种合成方法来解决这些问题,该方法可以对锰铁氧体纳米材料的簇尺寸和组成进行独立控制。

这项工作也为克服铁氧体纳米材料的胶体稳定性差提供了一种手段181920。磁性纳米颗粒通常由于强烈的颗粒 – 颗粒吸引力而容易聚集;铁氧体受这个问题的影响更大,因为它们较大的净磁化放大了粒子聚集。在相关的生物介质中,这些材料产生足够大的聚集体,使材料迅速收集,从而限制了它们与动物或人的接触途径202122。Hilt等人在研究磁热加热和染料降解时发现了颗粒- 颗粒聚集的另一个后果23。在颗粒浓度略高或暴露于场中的时间增加时,随着材料随着时间的推移而聚集并且活性颗粒表面积减小,材料的有效性降低。这些应用和其他应用将受益于簇表面,这些表面旨在提供空间位阻,排除粒子 – 粒子相互作用2425

在这里,我们报告了一种合成方法,用于合成具有可控尺寸和成分的锰铁氧体簇(MFC)。这些多域颗粒由硬聚集的初级锰铁氧体纳米晶体的组装组成;初级纳米晶体的紧密结合增强了它们的磁性,并提供了50-300 nm的整体簇尺寸,与纳米医学的最佳尺寸很好地匹配。通过改变水和氯化锰前体的量,我们可以独立控制整体直径和成分。该方法利用简单有效的一锅水热反应,允许频繁的实验和材料优化。这些MFC可以很容易地纯化成浓缩的产品溶液,通过赋予胶体稳定性的磺化聚合物进一步修饰。它们的可调性、均匀性和溶液相稳定性都是纳米材料在生物医学和环境工程中的应用具有重要价值的特点。

Protocol

1. 控制中间商联总直径和铁氧体组成的中间商联苯合成 清洗并彻底干燥所有用于合成的玻璃器皿。合成中的水量会影响MFC的尺寸,因此确保玻璃器皿中没有残留水至关重要16,26。 要清洗玻璃器皿,请用水和洗涤剂冲洗,并用烧瓶刷擦洗以清除碎屑。彻底冲洗以除去所有洗涤剂,然后用去离子水冲洗完毕。 要干燥玻璃…

Representative Results

水热处理后,反应混合物变成粘稠的黑色分散体,如图 1所示。纯化后的结果是高度浓缩的MFC溶液,其行为类似于铁磁流体。当放置在手持式磁铁(<0.5 T)附近时,小瓶中的液体在几秒钟内就会做出反应,形成宏观的黑色团块,当磁铁放置在不同的位置时,可以四处移动。 该合成产生的产物的尺寸和铁氧体组成取决于反应混合物中加入的水量和锰与铁前…

Discussion

这项工作证明了锰铁氧体纳米晶体的改性多元醇合成,这些纳米晶体聚集在一起形成均匀的纳米级聚集体29。在该合成中,氯化铁(III)和氯化锰(II)进行强制水解反应和还原,形成分子MnxFe3-xO4。这些铁氧体分子在反应器中的高温和高压下形成初级纳米晶体,最终组装成球形聚集体,这里称为磁铁矿铁氧体簇(MFC)。没有足够的反应时间或足够…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了布朗大学和先进能源联盟的慷慨支持。我们非常感谢张青波博士建立的氧化铁MFC合成方法。

Materials

0.1 Micron Vaccum Filtration Filter Thermo Fisher Scientific NC9902431 for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution
2-Acrylamido-2-methylpropane sulfonic acid (AMPS, 99%) Sigma-Aldrich 282731-250G reagent used in copolymer to surface coat nanoclusters and functionalize them for biological media
2,2′-Azobis(2-methylpropionitrile) (AIBN) Sigma-Aldrich 441090-100G reagent used in copolymer making as the free ridical generator
4-Morpholineethanesulfonic acid, 2-(N-Morpholino)ethanesulfonic acid (MES) Sigma-Aldrich M3671-250G acidic buffer used to stabilize nanocluster surface coating process
Acrylic acid Sigma-Aldrich 147230-100G reagent used in copolymer to surface coat nanoclusters and functionalize them for biological media; anhydrous, contains 200 ppm MEHQ as inhibitor, 99%
Analytical Balance Avantor VWR-205AC used to weigh out solid chemical reagents for use in synthesis and dilution
Digital Sonifier and Probe Branson B450 used to sonicate nanocluster solution during surface coating to break up aggregates
Dopamine hydrochloride Sigma-Aldrich H8502-25G used in surface coating for ligand exchange reaction
Ethylene glycol (anhydrous, 99.8%) Sigma-Aldrich 324558-2L reagent used as solvent in hydrothermal synthesis of nanoclusters
Glass Vials (20mL) Premium Vials B1015 container for nanocluster solution during washing and surface coating as well as polymer solutions
Graduated Beaker (100mL) Corning 1000-100 container for mixing of solid and liquid reagents during hydrothermal synthesis (to be transferred into autoclave reactor before oven)
Handheld Magnet MSC Industrial Supply, Inc. 92673904 1/2" Long x 1/2" Wide x 1/8" High, 5 Poles, Rectangular Neodymium Magnet low strength magnet used to precipitate nanoclusters from solution (field strength is increased with steel wool when needed)
Hydrochloric acid (ACS grade, 37%) Fisher Scientific 7647-01-0 for removing leftover nanocluster debris and cleaning autoclave reactors for next use
Hydrothermal Autoclave Reactor Toption TOPT-HP500 container for finished reagent mixture to withstand high temperature and pressure created by the oven in hydrothermal synthesis
Iron(III) Chloride Hexahydrate (FeCl3·6H2O, ACS reagent, 97%) ACS 236489-500G reagent used in synthesis of nanoclusters as source of iron (III) that becomes iron (II) in finished nanocluster product (keep dry and weigh out quickly to avoid water contamination)
Labware Washer Brushes Fisher Scientific 13-641-708 used to wash and clean glassware before synthesis
Magnetic Stir Plate Thermo Fisher Scientific 50093538 for mixing of solid and liquid reagents during hydrothermal synthesis
Manganese chloride tetrahydrate (MnCl2·4H2O, 99.0%, crystals, ACS) Sigma-Aldrich 1375127-2G reagent used in synthesis of nanoclusters as source of manganese
Micropipette (100-1000μL) Thermo Fisher Scientific FF-1000 for transferring liquid reagents such as water and manganese chloride
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) Sigma-Aldrich 25952-53-8 used in surface coating to assist in ligand exchange of copolymer (keep bulk chemical in freezer and diluted solution in refrigerator)
N,N-Dimethylformamide (DMF) Sigma-Aldrich 227056-2L reagent used in copolymer making as the solvent
Polyacrylic acid sodium salt (PAA, Mw~6,000) PolyScience Inc. 06567-250 reagent used in hydrothermal synthesis to initially coat the nanoclusters (eventually replaced in surface coating step)
Poly(ethylene glycol) methyl ether acrylate Sigma-Aldrich 454990-250ML reagent used in copolymer to surface coat nanoclusters and functionalize them for biological media; average Mn 480, contains 100 ppm BHT as inhibitor, 100 ppm MEHQ as inhibitor
Reagents Acetone, 4L, ACS Reagent Cole-Parmer UX-78920-66 used as solvent to precipitate nanoclusters during washing
Single Channel Pipette, Adjustable 1-10 mL Eppendorf 3123000080 for transferring ethylene glycol and other liquids
Steel Wool Lowe's 788470 used to increase the magnetic field strength in the vial to aid in precipitation of nanoclusters for washing and surface coating
Stirring Bar Thomas Scientific 8608S92 for mixing of solid and liquid reagents during hydrothermal synthesis
Table Clamp Grainger 29YW53 for tight sealing of autoclave reactor to withstand high pressure of oven during hyrothermal synthesis
Urea (ACS reagent, 99.0%) Sigma-Aldrich U5128-500G reagent used in hydrothermal synthesis to create a basic solution
Vaccum Filtration Bottle Tops Thermo Fisher Scientific 596-3320 for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution
Vacuum Controller V-850 Buchi BU-V850 for filtration of aggregated clusters after synthesis and surface coating to achieve a uniform solution
Vacuum Oven Fisher Scientific 13-262-51 used to create high temperature and pressure needed for nanocluster formation in hydrothermal synthesis

References

  1. Makridis, A., et al. In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. Journal of Materials Chemistry B. 2 (47), 8390-8398 (2014).
  2. Nelson-Cheeseman, B., Chopdekar, R., Toney, M., Arenholz, E., Suzuki, Y. Interplay between magnetism and chemical structure at spinel-spinel interfaces. Journal of Applied Physics. 111 (9), 093903 (2012).
  3. Otero-Lorenzo, R., Fantechi, E., Sangregorio, C., Salgueiriño, V. Solvothermally driven Mn doping and clustering of iron oxide nanoparticles for heat delivery applications. Chemistry-A European Journal. 22 (19), 6666-6675 (2016).
  4. Mohapatra, J., et al. Enhancement of magnetic heating efficiency in size controlled MFe 2 O 4 (M= Mn, Fe, Co and Ni) nanoassemblies. Rsc Advances. 5 (19), 14311-14321 (2015).
  5. Qi, Y., et al. Carboxylic silane-exchanged manganese ferrite nanoclusters with high relaxivity for magnetic resonance imaging. Journal of Materials Chemistry B. 1 (13), 1846-1851 (2013).
  6. Anandhi, J. S., Jacob, G. A., Joseyphus, R. J. Factors affecting the heating efficiency of Mn-doped Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials. 512, 166992 (2020).
  7. Del Bianco, L., et al. Mechanism of magnetic heating in Mn-doped magnetite nanoparticles and the role of intertwined structural and magnetic properties. Nanoscale. 11 (22), 10896-10910 (2019).
  8. Padmapriya, G., Manikandan, A., Krishnasamy, V., Jaganathan, S. K., Antony, S. A. Enhanced catalytic activity and magnetic properties of spinel Mn x Zn 1−x Fe 2 O 4 (0.0≤x≤1.0) nano-photocatalysts by microwave irradiation route. Journal of Superconductivity and Novel Magnetism. 29 (8), 2141-2149 (2016).
  9. Kim, J., et al. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. Journal of the American Chemical Society. 139 (32), 10992-10995 (2017).
  10. Silva, L. H., Cruz, F. F., Morales, M. M., Weiss, D. J., Rocco, P. R. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells. Stem Cell Research & Therapy. 8 (1), 1-8 (2017).
  11. Otero-Lorenzo, R., Ramos-Docampo, M. A., Rodriguez-Gonzalez, B., Comesaña-Hermo, M., Salgueiriño, V. Solvothermal clustering of magnetic spinel ferrite nanocrystals: a Raman perspective. Chemistry of Materials. 29 (20), 8729-8736 (2017).
  12. Aghazadeh, M., Karimzadeh, I., Ganjali, M. R. PVP capped Mn2+ doped Fe3O4 nanoparticles: a novel preparation method, surface engineering and characterization. Materials Letters. 228, 137-140 (2018).
  13. Li, Z., et al. Solvothermal synthesis of MnFe 2 O 4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties. New Journal of Chemistry. 39 (1), 361-368 (2015).
  14. Guo, P., Zhang, G., Yu, J., Li, H., Zhao, X. Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 395, 168-174 (2012).
  15. Pardo, A., et al. Synthesis, characterization, and evaluation of superparamagnetic doped ferrites as potential therapeutic nanotools. Chemistry of Materials. 32 (6), 2220-2231 (2020).
  16. Xiao, Z., et al. Libraries of uniform magnetic multicore nanoparticles with tunable dimensions for biomedical and photonic applications. ACS Applied Materials & Interfaces. 12 (37), 41932-41941 (2020).
  17. Choi, Y. S., Young Yoon, H., Sung Lee, J., Hua Wu, J., Keun Kim, Y. Synthesis and magnetic properties of size-tunable Mn x Fe3−x O4 ferrite nanoclusters. Journal of Applied Physics. 115 (17), (2014).
  18. Creixell, M., et al. The effect of grafting method on the colloidal stability and in vitro cytotoxicity of carboxymethyl dextran coated magnetic nanoparticles. Journal of Materials Chemistry. 20 (39), 8539-8547 (2010).
  19. Latorre, M., Rinaldi, C. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. Puerto Rico Health Sciences Journal. 28 (3), (2009).
  20. Yeap, S. P., Lim, J., Ooi, B. S., Ahmad, A. L. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. Journal of Nanoparticle Research. 19 (11), 1-15 (2017).
  21. Lee, S. -. Y., Harris, M. T. Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents. Journal of Colloid and Interface Science. 293 (2), 401-408 (2006).
  22. Yeap, S. P., Ahmad, A. L., Ooi, B. S., Lim, J. Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir. 28 (42), 14878-14891 (2012).
  23. Wydra, R. J., Oliver, C. E., Anderson, K. W., Dziubla, T. D., Hilt, J. Z. Accelerated generation of free radicals by iron oxide nanoparticles in the presence of an alternating magnetic field. RSC Advances. 5 (24), 18888-18893 (2015).
  24. Bagaria, H. G., et al. Iron oxide nanoparticles grafted with sulfonated copolymers are stable in concentrated brine at elevated temperatures and weakly adsorb on silica. ACS Applied Materials & Interfaces. 5 (8), 3329-3339 (2013).
  25. Park, J. C., Park, T. Y., Cha, H. J., Seo, J. H. Multifunctional nanocomposite clusters enabled by amphiphilic/bioactive natural polysaccharides. Chemical Engineering Journal. 379, 122406 (2020).
  26. Hemery, G., et al. Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorganic Chemistry. 56 (14), 8232-8243 (2017).
  27. Lartigue, L., et al. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano. 6 (12), 10935-10949 (2012).
  28. Yavayo, C. T., et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science. 314 (5801), 964-967 (2006).
  29. Matijević, E., Scheiner, P. Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe (III)-chloride,-nitrate, and-perchlorate solutions. Journal of Colloid and Interface Science. 63 (3), 509-524 (1978).
  30. Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J. Three-dimensional real-time in vivo magnetic particle imaging. Physics in Medicine & Biology. 54 (5), 1 (2009).
  31. Zhu, X., Li, J., Peng, P., Hosseini Nassab, N., Smith, B. R. Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite. Nano Letters. 19 (10), 6725-6733 (2019).
  32. Tay, Z. W., et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano. 12 (4), 3699-3713 (2018).
check_url/fr/63140?article_type=t

Play Video

Citer Cet Article
Effman, S., Avidan, S., Xiao, Z., Colvin, V. Stable Aqueous Suspensions of Manganese Ferrite Clusters with Tunable Nanoscale Dimension and Composition. J. Vis. Exp. (180), e63140, doi:10.3791/63140 (2022).

View Video