Summary

Een flexibel platform voor het monitoren van cerebellum-afhankelijk sensorisch associatief leren

Published: January 19, 2022
doi:

Summary

We hebben één platform ontwikkeld om het gedrag van dieren te volgen tijdens twee klimmende vezelafhankelijke associatieve leertaken. Het goedkope ontwerp maakt integratie mogelijk met optogenetische of beeldvormingsexperimenten gericht op het beklimmen van vezelgerelateerde cerebellaire activiteit.

Abstract

Klimmende vezelingangen naar Purkinje-cellen bieden instructieve signalen die cruciaal zijn voor cerebellum-afhankelijk associatief leren. Het bestuderen van deze signalen in hoofd-gefixeerde muizen vergemakkelijkt het gebruik van beeldvormings-, elektrofysiologische en optogenetische methoden. Hier werd een goedkoop gedragsplatform (~ $ 1000) ontwikkeld dat het mogelijk maakt om associatief leren te volgen in hoofd-vaste muizen die vrij bewegen op een loopwiel. Het platform bevat twee gemeenschappelijke associatieve leerparadigma’s: eyeblinkconditionering en vertraagde tactiele schrikconditionering. Gedrag wordt gevolgd met behulp van een camera en de wielbeweging door een detector. We beschrijven de componenten en setup en bieden een gedetailleerd protocol voor training en data-analyse. Dit platform maakt de integratie van optogenetische stimulatie en fluorescentiebeeldvorming mogelijk. Het ontwerp stelt een enkele hostcomputer in staat om meerdere platforms te besturen voor het tegelijkertijd trainen van meerdere dieren.

Introduction

Pavloviaanse conditionering van subseconde associatie tussen stimuli om een geconditioneerde reactie uit te lokken, wordt al lang gebruikt om cerebellair-afhankelijk leren te onderzoeken. Bij klassieke delay eyeblink conditioning (DEC) leren dieren bijvoorbeeld om een goed getimede beschermende knipper te maken als reactie op een neutrale voorwaardelijke stimulus (CS; bijvoorbeeld een lichtflits of auditieve toon) wanneer deze herhaaldelijk gepaard gaat met een onvoorwaardelijke stimulus (VS; bijvoorbeeld een trekje lucht dat op het hoornvlies wordt aangebracht) dat altijd een reflex knippert, en die op of nabij het einde van de CS komt. De aangeleerde respons wordt een geconditioneerde respons (CR) genoemd, terwijl de reflexrespons de ongeconditioneerde respons (UR) wordt genoemd. Bij konijnen verstoren cerebellum-specifieke laesies deze vorm van leren 1,2,3,4. Verder leveren Purkinje-celcomplexpieken, aangedreven door hun klimmende vezelingangen5, een noodzakelijk 6,7 en voldoende 8,9-signaal voor de verwerving van correct getimede CER’s.

Meer recent zijn klimmende vezelafhankelijke associatieve leerparadigma’s ontwikkeld voor hoofd-gefixeerde muizen. DEC was het eerste associatieve leerparadigma dat aan deze configuratie werd aangepast10,11. DEC in head-fixed muizen is gebruikt om cerebellaire gebieden 11,12,13,14,15,16,17 en circuitelementen 11,1 2,13,14,15,18,19 te identificeren die nodig zijn voor taakverwerving en uitsterven. Deze benadering is ook gebruikt om aan te tonen hoe de fysiologische representatie van taakparameters op cellulair niveau evolueert met leren 13,15,16.

Naast eyeblink werd onlangs het vertraagde schrik tactiele conditionering (DTSC) paradigma ontwikkeld als een nieuwe associatieve leertaak voor hoofd-gefixeerde muizen20. Conceptueel vergelijkbaar met DEC, omvat DTSC de presentatie van een neutrale CS met een US, een tik op het gezicht die voldoende in intensiteit is om een schrikreflex21,22 als de UR te activeren. In het DTSC-paradigma worden zowel de UR als de CR uitgelezen als achterwaartse voortbeweging op een wiel. DTSC is nu gebruikt om te ontdekken hoe associatief leren cerebellaire activiteit en patronen van genexpressie verandert20.

In dit werk is een methode ontwikkeld om DEC of DTSC flexibel toe te passen in één platform. De stimulus- en platformattributen zijn geschematiseerd in figuur 1. Het ontwerp bevat de capaciteit om het gedrag van dieren te volgen met een camera en een roterende encoder om de voortbeweging van de muis op een wiel te volgen. Alle aspecten van datalogging en proefstructuur worden bestuurd door gepaarde microcontrollers (Arduino) en een single-board computer (SBC; Raspberry Pi). Deze apparaten zijn toegankelijk via een meegeleverde grafische gebruikersinterface. Hier presenteren we een workflow voor installatie, experimentvoorbereiding en -uitvoering en een aangepaste analysepijplijn voor gegevensvisualisatie.

Protocol

De hier beschreven dierprotocollen zijn goedgekeurd door de Animal Care and Use Committees van Princeton University. 1. De SBC instellen Sluit de CSI-kabel (Serial Interface) van de camera aan op de Raspberry NoIR V2-camera en de camerapoort op de SBC. Download het besturingssysteem voor de SBC naar de hostcomputer. Schrijf de afbeelding van het besturingssysteem naar een microveilige digitale (microSD)-kaart.OPMERKING: Gedetailleerde instructies voor d…

Representative Results

Workflow voor DEC experimenten en analyseEen goede experimentele parameterselectie is belangrijk voor een succesvolle delay eyeblink conditioning (DEC) training. Voor de hier gepresenteerde gegevens werd de GUI gebruikt om een CS-duur van 350 ms en een Amerikaanse duur van 50 ms te kiezen. Deze koppeling resulteert in een interstimulusinterval van 300 ms: lang genoeg om cr-productie met lage amplitude10 te voorkomen en kort genoeg om te voorkomen dat u in het regime van slecht…

Discussion

Het platform met bijbehorende protocollen dat hier wordt beschreven, kan worden gebruikt om het gedrag van dieren betrouwbaar te volgen in twee sensorische associatieve leertaken. Elke taak is afhankelijk van intacte communicatie via het klimvezelpad. In het hier beschreven ontwerp nemen we elementen op om het leren en vastleggen /verstoren van de cerebellaire respons te vergemakkelijken. Deze omvatten een wiel om vrije voortbeweging11,18 mogelijk te maken, evena…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Dit werk wordt ondersteund door subsidies van de National Institutes of Mental Health NRSA F32 MH120887-03 (aan G.J.B.) en R01 NS045193 en R01 MH115750 (aan S.S-H.W.). Wij danken Drs. Bas Koekkoek en Henk-Jan Boele voor nuttige discussies voor het optimaliseren van de DEC setup en Drs. Yue Wang en Xiaoying Chen voor nuttige discussies voor het optimaliseren van de DTSC setup.

Materials

"B" Quick Base For C&B METABOND – 10 mL bottle Parkell S398 Dental cement solvent
"C" Universal TBB Catalyst – 0.7 mL Parkell S371 Catalyst
#8 Washers Thorlabs W8S038 Washers
0.250" (1/4") x 8.00" Stainless Steel Precision Shafting Servocity 634172 1/4" shaft
0.250” (0.770") Clamping Hub Servocity 545588 Clamping hub
1/4" to 6 mm Set Screw Shaft Coupler- 5 pack Actobotics 625106 Shaft-coupling sleeve
1/4"-20 Cap Screws, 3/4" Long Thorlabs SH25S075 1/4" bolt
100 pcs 5 mm 395–400 nm UV Ultraviolet LED Light Emitting Diode Clear Round Lens 29 mm Long Lead (DC 3V) LEDs Lights +100 pcs Resistors EDGELEC ‎ED_YT05_U_100Pcs CS LEDs
2 m Micro HDMI to DVI-D Cable – M/M – 2 m Micro HDMI to DVI Cable – 19 pin HDMI (D) Male to DVI-D Male – 1920 x 1200 Video Star-tech ‎HDDDVIMM2M Raspberry Pi4B to monitor cable
256 GB Ultra Fit USB 3.1 Flash Drive SanDisk ‎SDCZ430-256G-G46 USB thumb drive
3.3 V–5 V 4 Channels Logic Level Converter Bi-Directional Shifter Module Amazon B00ZC6B8VM Logic level shifter
32 GB 95 MB/s (U1) microSDHC EVO Select Memory Card Samsung ‎MB-ME32GA/AM microSD card
4.50" Aluminum Channel Servocity 585444 4.5" aluminum channel
48-LED CCTV Ir Infrared Night Vision Illuminator Towallmark SODIAL Infrared light array
4PCS Breadboards Kit Include 2PCS 830 Point 2PCS 400 Point Solderless Breadboards for Proto Shield Distribution Connecting Blocks REXQualis B07DL13RZH Breadboard
5 Port Gigabit Unmanaged Ethernet Network Switch TP-Link ‎TL-SG105 Ethernet switch
5 V 2.5 A Raspberry Pi 3 B+ Power Supply/Adapter Canakit ‎DCAR-RSP-2A5 Power supply for Raspberry Pi 3B+
5-0 ETHILON BLACK 1 x 18" C-3 Ethicon 668G Sutures
6 mm Shaft Encoder 2000 PPR Pushpull Line Driver Universal Output Line Driver Output 5-26 V dc Supply Calt  B01EWER68I Rotary encoder
Ø1/2" Optical Post, SS, 8-32 Setscrew, 1/4"-20 Tap, L = 1", 5 Pack Thorlabs TR1-P5 Optical posts
Ø1/2" Optical Post, SS, 8-32 Setscrew, 1/4"-20 Tap, L = 2", 5 Pack Thorlabs TR2-P5 Optical posts
Ø1/2" Optical Post, SS, 8-32 Setscrew, 1/4"-20 Tap, L = 4", 5 Pack Thorlabs TR4-P5 Optical posts
Ø1/2" Optical Post, SS, 8-32 Setscrew, 1/4"-20 Tap, L = 6", 5 Pack Thorlabs TR6-P5 Optical posts
Ø1/2" Post Holder, Spring-Loaded Hex-Locking Thumbscrew, L = 2" Thorlabs PH2 Optical post holder
Adapter-062-M X LUER LOCK-F The Lee Co. TMRA3201950Z Solenoid valve luer adapter
Aeromat Foam Roller Size: 36" Length Aeromat B002H3CMUE Foam roller
Aluminum Breadboard 10" x 12" x 1/2", 1/4"-20 Taps Thorlabs MB1012 Aluminum breadboard
Amazon Basics HDMI to DVI Adapter Cable, Black, 6 Feet, 1-Pack Amazon HL-007347 Raspberry Pi3B+ to monitor cable
Arduino  Uno R3 Arduino A000066 Arduino Uno (microcontroller board)
Arduino Due Arduino ‎A000062 Arduino Due (microcontroller board)
Bench Power Supply, Single, Adjustable, 3 Output, 0 V, 24 V, 0 A, 2 A Tenma 72-8335A Power supply
Clear Scratch- and UV-Resistant Cast Acrylic Sheet, 12" x 24" x 1/8" McMaster Carr 8560K257 Acrylic sheet
CNC Stepper Motor Driver 1.0–4.2 A 20–50 V DC 1/128 Micro-Step Resolutions for Nema 17 and 23 Stepper Motor Stepper Online B06Y5VPSFN Stepper motor driver
Compact Compressed Air Regulator, Inline Relieving, Brass Housing, 1/4 NPT McMaster Carr 6763K13 Air source regulator
Cotton Swab Puritan 806-WC Cotton swab
Dell 1908FP 19" Flat Panel Monitor – 1908FPC Dell 1908FPC Computer monitor
Flex Cable for Raspberry Pi Camera Adafruit 2144 camera serial interface cable
High Torque Nema 17 Bipolar Stepper Motor 92 oz·in/65 N·cm 2.1 A Extruder Motor Stepper Online 17HS24-2104S Stepper motor
Isoflurane Henry Schein 66794001725 Isoflurane
Krazy Maximum Bond Permanent Glue, 0.18 oz. Krazy Glue KG483 Cyanoacrylate glue
Lidocaine HCl VetOne 510212 Lidocaine
Low-Strength Steel Hex Nut, Grade 2, Zinc-Plated, 1/4"-20 Thread Size McMaster Carr 90473A029 Nuts
M3 x 50 mm Partially Threaded Hex Key Socket Cap Head Screws 10 pcs Uxcell A16040100ux1380 M3 bolt
NEMA 17 Stepper Motor Mount ACTOBOTICS 555152 Stepper motor mount
Official Raspberry Pi Power Supply 5.1 V 3 A with USB C – 1.5 m long Adafruit 4298 Power supply for Raspberry Pi 4B
Optixcare Dog & Cat Eye Lube Lubricating Gel, 0.70-oz tube Optixcare 142422 Opthalimic ointment
Precision Stainless Steel Ball Bearing, Shielded, Trade No. R188-2Z, 13000 rpm Maximum Speed McMaster-Carr 3759T57 Bearing
Premium Female/Female Jumper Wires – 40 x 6" Adafruit 266 Wires
Premium Female/Male 'Extension' Jumper Wires – 40 x 6" (150 mm) Adafruit 826 Wires
Premium Male/Male Jumper Wires – 40 x 6" Adafruit 758 Wires
Radiopaque L-Powder for C&B METABOND – 5 g Parkell S396 Dental cement powder
Raspberry Pi (3B+ or 4B) Adafruit 3775 or 4295 Raspberry Pi
Raspberry Pi NoIR Camera Module V2 – 8MP 1080P30 Raspberry Pi Foundation RPI3-NOIR-V2 Raspberry NoIR V2 camera
Right-Angle Bracket, 1/4" (M6) Counterbored Slot, 8-32 Taps Thorlabs AB90E Right-angle bracket
Right-Angle Clamp for Ø1/2" Posts, 3/16" Hex Thorlabs RA90 Right-angle optical post clamp
Right-Angle End Clamp for Ø1/2" Posts, 1/4"-20 Stud and 3/16" Hex Thorlabs RA180 Right-angle end clamp
RJ45 Cat-6 Ethernet Patch Internet Cable Amazon ‎CAT6-7FT-5P-BLUE Ethernet cable
Rotating Clamp for Ø1/2" Posts, 360° Continuously Adjustable, 3/16" Hex Thorlabs SWC Rotating optical post clamps
Spike & Hold Driver-0.1 TO 5 MS The Lee Co. IECX0501350A Solenoid valve driver
Swivel Base Adapter Thorlabs UPHA Post holder adapter
USB 2.0 A-Male to Micro B Cable, 6 feet Amazon ‎7T9MV4 USB2 type A to USB2 micro cable
USB 2.0 Printer Cable – A-Male to B-Male, 6 Feet (1.8 m) Amazon B072L34SZS USB2 type B to USB2 type A cable
VHS-M/SP-12 V The Lee Co. INKX0514900A Solenoid valve
Zinc-Plated Steel 1/4" washer, OD 1.000" McMaster Carr 91090A108 Washers

References

  1. McCormick, D. A., Lavond, D. G., Clark, G. A., Kettner, R. E., Rising, C. E., Thompson, R. F. The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bulletin of the Psychonomic Society. 18 (3), 103-105 (1981).
  2. McCormick, D. A., Clark, G. A., Lavond, D. G., Thompson, R. F. Initial localization of the memory trace for a basic form of learning. Proceedings of the National Academy of Sciences of the United States of America. 79 (8), 2731-2735 (1982).
  3. McCormick, D. A., Thompson, R. F. Cerebellum: essential involvement in the classically conditioned eyelid response. Science. 223 (4633), 296-299 (1984).
  4. Krupa, D. J., Thompson, J. K., Thompson, R. F. Localization of a memory trace in the mammalian brain. Science. 260 (5110), 989-991 (1993).
  5. Llinás, R., Sugimori, M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. The Journal of Physiology. 305, 197-213 (1980).
  6. Mintz, M., Lavond, D. G., Zhang, A. A., Yun, Y., Thompson, R. F. Unilateral inferior olive NMDA lesion leads to unilateral deficit in acquisition and retention of eyelid classical conditioning. Behavioral and Neural Biology. 61 (3), 218-224 (1994).
  7. Welsh, J. P., Harvey, J. A. Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 9 (1), 299-311 (1989).
  8. Mauk, M. D., Steinmetz, J. E., Thompson, R. F. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proceedings of the National Academy of Sciences of the United States of America. 83 (14), 5349-5353 (1986).
  9. Steinmetz, J. E., Lavond, D. G., Thompson, R. F. Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse. 3 (3), 225-233 (1989).
  10. Chettih, S. N., McDougle, S. D., Ruffolo, L. I., Medina, J. F. Adaptive timing of motor output in the mouse: The role of movement oscillations in eyelid conditioning. Frontiers in Integrative Neuroscience. 5, 72 (2011).
  11. Heiney, S. A., Wohl, M. P., Chettih, S. N., Ruffolo, L. I., Medina, J. F. Cerebellar-dependent expression of motor learning during eyeblink conditioning in head-fixed mice. The Journal of Neuroscience. 34 (45), 14845-14853 (2014).
  12. Heiney, S. A., Kim, J., Augustine, G. J., Medina, J. F. Precise control of movement kinematics by optogenetic inhibition of purkinje cell activity. Journal of Neuroscience. 34 (6), 2321-2330 (2014).
  13. Ten Brinke, M. M., et al. Evolving models of pavlovian conditioning: Cerebellar cortical dynamics in awake behaving mice. Cell Reports. 13 (9), 1977-1988 (2015).
  14. Gao, Z., et al. Excitatory cerebellar nucleocortical circuit provides internal amplification during associative conditioning. Neuron. 89 (3), 645-657 (2016).
  15. Giovannucci, A., et al. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nature Neuroscience. 20 (5), 727-734 (2017).
  16. Ten Brinke, M. M., et al. Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. eLife. 6, 28132 (2017).
  17. Wang, X., Yu, S., Ren, Z., De Zeeuw, C. I., Gao, Z. A FN-MdV pathway and its role in cerebellar multimodular control of sensorimotor behavior. Nature Communications. 11 (1), 6050 (2020).
  18. Albergaria, C., Silva, N. T., Pritchett, D. L., Carey, M. R. Locomotor activity modulates associative learning in mouse cerebellum. Nature Neuroscience. 21 (5), 725-735 (2018).
  19. Kim, O. A., Ohmae, S., Medina, J. F. A cerebello-olivary signal for negative prediction error is sufficient to cause extinction of associative motor learning. Nature Neuroscience. 23 (12), 1550-1554 (2020).
  20. Yamada, T., et al. Sensory experience remodels genome architecture in neural circuit to drive motor learning. Nature. 569 (7758), 708-713 (2019).
  21. Horlington, M. Startle response circadian rhythm in rats: lack of correlation with motor activity. Physiology & Behavior. 5 (1), 49-53 (1970).
  22. Yeomans, J. S., Li, L., Scott, B. W., Frankland, P. W. Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neuroscience and Biobehavioral Reviews. 26 (1), 1-11 (2002).
  23. . Raspberry Pi Operating system images Available from: https://www.raspberrypi.com/software/operationg-systems/ (2021)
  24. . VNC Server. VNC® Connect Available from: https://www.realvnc.com/en/connect/download/vnc/ (2021)
  25. . Anaconda: The world’s most popular data science platform Available from: https://xddebuganaconda.xdlab.co/ (2021)
  26. De Zeeuw, C. I., Ten Brinke, M. M. Motor learning and the cerebellum. Cold Spring Harbor Perspectives in Biology. 7 (9), 021683 (2015).
  27. Badura, A., et al. Normal cognitive and social development require posterior cerebellar activity. eLife. 7, 36401 (2018).
  28. Koekkoek, S. K. E., Den Ouden, W. L., Perry, G., Highstein, S. M., De Zeeuw, C. I. Monitoring kinetic and frequency-domain properties of eyelid responses in mice with magnetic distance measurement technique. Journal of Neurophysiology. 88 (4), 2124-2133 (2002).
  29. Kloth, A. D., et al. Cerebellar associative sensory learning defects in five mouse autism models. eLife. 4, 06085 (2015).
  30. Boele, H. -. J., Koekkoek, S. K. E., De Zeeuw, C. I. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Frontiers in Cellular Neuroscience. 3, (2010).
  31. Lin, C., Disterhoft, J., Weiss, C. Whisker-signaled eyeblink classical conditioning in head-fixed Mice. Journal of Visualized Experiments: JoVE. (109), e53310 (2016).
  32. Pereira, T. D., et al. Fast animal pose estimation using deep neural networks. Nature Methods. 16 (1), 117-125 (2019).
  33. Mathis, A., et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience. 21 (9), 1281-1289 (2018).
check_url/fr/63205?article_type=t

Play Video

Citer Cet Article
Broussard, G. J., Kislin, M., Jung, C., Wang, S. S. -. A Flexible Platform for Monitoring Cerebellum-Dependent Sensory Associative Learning. J. Vis. Exp. (179), e63205, doi:10.3791/63205 (2022).

View Video