Summary

用于制造基于芯片的超级电容器的喷墨打印机的精细控制

Published: November 30, 2021
doi:

Summary

本文提供了一种使用喷墨打印机制造基于芯片的超级电容器的技术。详细描述了合成油墨,调整软件参数和分析所制造的超级电容器的电化学结果的方法。

Abstract

在各个领域,将喷墨打印方法应用于可穿戴设备,显示器和储能设备的制造方面做出了巨大的努力。然而,为了获得高质量的产品,需要复杂的操作技能,具体取决于油墨材料的物理性能。在这方面,优化喷墨打印参数与开发油墨材料的物理性能同样重要。本研究对用于制造超级电容器的喷墨打印软件参数进行了优化。超级电容器是有吸引力的储能系统,因为它们具有高功率密度,长寿命以及作为电源的各种应用。超级电容器可用于物联网(IoT),智能手机,可穿戴设备,电动汽车(EV),大型储能系统等。广泛的应用需要一种可以制造各种规模设备的新方法。喷墨打印方法可以突破传统的固定尺寸制造方法。

Introduction

在过去的几十年中,已经为各种应用开发了多种打印方法,包括可穿戴设备1,制药2和航空航天组件3。只需更改要使用的材料,即可轻松适应各种设备。此外,它还可以防止原材料的浪费。为了制造电子设备,已经开发了几种印刷方法,例如丝网印刷4,推涂5和平版印刷6 。与这些印刷技术相比,喷墨印刷方法具有多重优势,包括减少材料浪费,与多种承印物兼容7,低成本8,灵活性9,低温加工10,易于批量生产11。然而,对于某些复杂的设备,几乎没有建议应用喷墨打印方法。在这里,我们提出了一个协议,该协议建立了使用喷墨打印方法打印超级电容器设备的详细指南。

超级电容器,包括伪电容器和电化学双层电容器(EDLC),正在成为可以补充传统锂离子电池的储能器件1213。特别是,EDLC是一种有前途的储能器件,因为它具有低成本,高功率密度和长循环寿命14。活性炭(AC)具有高比表面积和导电性,在商用EDLC15中用作电极材料。交流电的这些特性使EDLC具有高电化学电容16。当使用传统的固定尺寸制造方法时,EDLC在器件中具有无源体积。通过喷墨打印,EDLC可以完全集成到产品设计中。因此,使用喷墨打印方法制造的设备在功能上优于现有固定尺寸方法制造的设备17。使用高效的喷墨打印方法制造EDLC可最大限度地提高EDLC的稳定性和使用寿命,并提供自由外形18。打印图案是使用PCB CAD程序设计的,并转换为Gerber文件。设计的图案是使用喷墨打印机打印的,因为它具有精确的软件控制,高材料吞吐量和打印稳定性。

Protocol

1. 使用PCB CAD程序设计图案 运行 CAD 程序。单击程序窗口顶部的“ 文件 ”按钮。要形成新的项目文件,请单击“ 新建 ”和“ 项目 ”按钮。 要生成开发板文件,请按顺序单击“文件”、“新建”和“版块”按钮。通过单击创建的“板文件”窗口左上角的网格形状网格…

Representative Results

根据步骤2合成墨水,并且可根据参考文献18确认墨水的特性。图8显示了导电油墨和EDLC油墨的结构性能,以及先前研究中报道的EDLC油墨的流变性能18。导电油墨被很好地烧结以形成连续的导电路径,并且纳米级的粗糙度有望增加与EDLC油墨的接触面积(图8A,B)。EDLC油墨在宏观尺度上均匀分布,但在微米?…

Discussion

此协议中的关键步骤涉及软件参数设置,通过微调参数值来打印设计的图案。定制印刷可以优化结构并获得新的机械性能19。具有软件参数控制的喷墨打印方法,通过为打印过程选择优化的材料,可用于各个行业的复杂打印。

在使用喷墨打印制造超级电容器时,一篇论文报告说,开发具有均匀和高分辨率的图案仍然存在局限性。据悉,高温后处理仍需,物料…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了韩国电力公司(批准号:R21XO01-24)的支持,这是由KIAT运营的韩国MOTIE行业专家的能力发展计划(编号:P0012453),以及2021年中港大学研究生研究奖学金。

Materials

2” x 3” FR­4 board Voltera SKU: 1000066 PCB substrate
Activated carbon MTI Np-Ag-0530HT
Eagle CAD Autodesk PCB CAD program
Ethyl cellulose Sigma Aldrich 46070 48.0-49.5% (w/w) ethoxyl basis
Flex 2 conductive ink Voltera SKU: 1000333 Flexible Ag ink
Lithium perchlorate Sigma Aldrich 634565
Propylene carbonate Sigma Aldrich 310328
PVDF Sigma Aldrich 182702 average Mw ~534,000 by GPC
Smart Manager ZIVE LAB ver : 6. 6. 8. 9 Electrochemical analysis program
Super-P Hyundai
Terpineol Sigma Aldrich 432628
Thinky mixer Thinky ARE-310 Planetary mixer
Triton-X Sigma Aldrich X100
V-One printer Voltera SKU: 1000329 PCB printer
ZIVE SP1 Wonatech Potentiostat device

References

  1. Valentine, A. D., et al. Hybrid 3D printing of soft electronics. Advanced Materials. 29 (40), 1703817 (2017).
  2. Liang, K., Carmone, S., Brambilla, D., Leroux, J. -. C. 3D printing of a wearable personalized oral delivery device: A first-in-human study. Science Advances. 4 (5), (2018).
  3. Joshi, S. C., Sheikh, A. A. 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping. 10 (4), 175-185 (2015).
  4. Wang, S., et al. Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosensors and Bioelectronics. 31 (1), 212-218 (2012).
  5. Vohra, V., et al. Low-cost and green fabrication of polymer electronic devices by push-coating of the polymer active layers. ACS Applied Materials & Interfaces. 9 (30), 25434-25444 (2017).
  6. Schüffelgen, P., et al. Selective area growth and stencil lithography for in situ fabricated quantum devices. Nature Nanotechnology. 14 (9), 825-831 (2019).
  7. Karim, N., Afroj, S., Tan, S., Novoselov, K. S., Yeates, S. G. All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Scientific Reports. 9 (1), 8035 (2019).
  8. Singh, M., Haverinen, H. M., Dhagat, P., Jabbour, G. E. Inkjet printing-Process and its applications. Advanced Materials. 22 (6), 673-685 (2010).
  9. An, B., et al. Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing. Chemical Communications. 52 (73), 10948-10951 (2016).
  10. Ko, S. H., Chung, J., Hotz, N., Nam, K. H., Grigoropoulos, C. P. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. Journal of Micromechanics and Microengineering. 20 (12), 125010 (2010).
  11. Li, J., et al. Efficient inkjet printing of graphene. Advanced Materials. 25 (29), 3985-3992 (2013).
  12. Burke, A. Ultracapacitors: why, how, where is the technology. Journal of Power Sources. 91 (1), 37-50 (2000).
  13. Qorbani, M., Khajehdehi, O., Sabbah, A., Naseri, N. Ti-rich TiO2 tubular nanolettuces by electrochemical anodization for all-solid-state high-rate supercapacitor devices. ChemSusChem. 12 (17), 4064-4073 (2019).
  14. Areir, M., Xu, Y., Harrison, D., Fyson, J. 3D printing of highly flexible supercapacitor designed for wearable energy storage. Materials Science and Engineering: B. 226, 29-38 (2017).
  15. Fialkov, A. S. Carbon application in chemical power sources. Russian Journal of Electrochemistry. 36 (4), 345-366 (2000).
  16. Pandolfo, A. G., Hollenkamp, A. F. Carbon properties and their role in supercapacitors. Journal of Power Sources. 157 (1), 11-27 (2006).
  17. Egorov, V., Gulzar, U., Zhang, Y., Breen, S., O’Dwyer, C. Evolution of 3D printing methods and materials for electrochemical energy storage. Advanced Materials. 32 (29), 2000556 (2020).
  18. Seol, M. -. L., et al. All-printed in-plane supercapacitors by sequential additive manufacturing process. ACS Applied Energy Materials. 3 (5), 4965-4973 (2020).
  19. Park, S. H., Kaur, M., Yun, D., Kim, W. S. Hierarchically designed electron paths in 3D printed energy storage devices. Langmuir. 34 (37), 10897-10904 (2018).
  20. Sajedi-Moghaddam, A., Rahmanian, E., Naseri, N. Inkjet-printing technology for supercapacitor application: Current state and perspectives. ACS Applied Materials & Interfaces. 12 (31), 34487-34504 (2020).
  21. Komuro, N., Takaki, S., Suzuki, K., Citterio, D. Inkjet printed (bio)chemical sensing devices. Analytical and Bioanalytical Chemistry. 405 (17), 5785-5805 (2013).
  22. Kim, J., Kumar, R., Bandodkar, A. J., Wang, J. Advanced materials for printed wearable electrochemical devices: A review. Advanced Electronic Materials. 3 (1), 1600260 (2017).
  23. Calvert, P. Inkjet printing for materials and devices. Chemistry of Materials. 13 (10), 3299-3305 (2001).
  24. Zhou, Z., et al. High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations. Additive Manufacturing. 29, 100792 (2019).
  25. Ebnesajjad, S., Ebnesajjad, S. . Handbook of Adhesives and Surface Preparation. , 21-30 (2011).
check_url/fr/63234?article_type=t

Play Video

Citer Cet Article
Choi, S., Kang, J., Jang, S., Eom, H., Kwon, O., Shin, J., Nam, I. Elaborate Control of Inkjet Printer for Fabrication of Chip-based Supercapacitors. J. Vis. Exp. (177), e63234, doi:10.3791/63234 (2021).

View Video