Summary

Visualizzazione e quantificazione di composti farmaceutici all'interno della pelle utilizzando l'imaging a dispersione Raman coerente

Published: November 24, 2021
doi:

Summary

Viene descritta una metodologia di imaging a dispersione Raman coerente per visualizzare e quantificare i composti farmaceutici all’interno della pelle. Questo documento descrive la preparazione del tessuto cutaneo (umano e murino) e l’applicazione della formulazione topica, l’acquisizione di immagini per quantificare i profili di concentrazione spaziotemporale e l’analisi farmacocinetica preliminare per valutare la somministrazione topica di farmaci.

Abstract

La farmacocinetica cutanea (cPK) dopo l’applicazione di formulazioni topiche è stata un’area di ricerca di particolare interesse per gli scienziati regolatori e di sviluppo di farmaci per comprendere meccanicamente la biodisponibilità topica (BA). Le tecniche semi-invasive, come lo stripping del nastro, la microdialisi cutanea o la microperfusione cutanea a flusso aperto, quantificano tutte la cPK su macroscala. Mentre queste tecniche hanno fornito una vasta conoscenza di cPK, la comunità manca di una comprensione meccanicistica della penetrazione e della permeazione del principio attivo farmaceutico (API) a livello cellulare.

Un approccio non invasivo per affrontare la cPK su microscala è il Raman scattering imaging (CRI) coerente, che si rivolge selettivamente alle vibrazioni molecolari intrinseche senza la necessità di etichette estrinseche o modifiche chimiche. CRI ha due metodi principali – anti-Stokes Raman scattering (CARS) e scattering Raman stimolato (SRS) – che consentono la quantificazione sensibile e selettiva di API o ingredienti inattivi. CARS viene in genere utilizzato per ricavare informazioni strutturali sulla pelle o visualizzare il contrasto chimico. Al contrario, il segnale SRS, che è lineare con la concentrazione molecolare, viene utilizzato per quantificare le API o gli ingredienti inattivi all’interno delle stratificazioni cutanee.

Sebbene il tessuto di topo sia stato comunemente utilizzato per cPK con CRI, il BA topico e la bioequivalenza (BE) devono essere valutati nel tessuto umano prima dell’approvazione normativa. Questo documento presenta una metodologia per preparare e visualizzare la pelle ex vivo da utilizzare in studi CRI di farmacocinetica quantitativa nella valutazione di BA e BE topici. Questa metodologia consente una quantificazione API affidabile e riproducibile all’interno della pelle umana e del mouse nel tempo. Le concentrazioni all’interno dei compartimenti ricchi di lipidi e poveri di lipidi, così come la concentrazione totale di API nel tempo sono quantificate; questi sono utilizzati per stime di MICRO e macroscala BA e, potenzialmente, BE.

Introduction

Le metodologie per valutare la cPK dopo l’applicazione di un farmaco topico si sono estese dagli studi classici di test di permeazione in vitro (IVPT) 1,2,3,4,5 e tape-stripping 6,7,8 a metodologie aggiuntive come la microperfusione a flusso aperto o la microdialisicutanea 9,10,11, 12,13,14. Esistono potenzialmente vari siti locali di azione terapeutica a seconda della malattia di interesse. Quindi, potrebbe esserci un numero corrispondente di metodologie per valutare la velocità e la misura in cui un’API arriva al sito di azione locale previsto. Mentre ciascuna delle metodologie di cui sopra ha i suoi vantaggi, il principale svantaggio è la mancanza di informazioni cPK su microscala (cioè l’incapacità di visualizzare dove va l’API e come permea).

Una metodologia non invasiva di interesse per stimare BA e BE topici è CRI, che può essere suddivisa in due modalità di imaging: CARS e microscopia SRS. Questi metodi Raman coerenti consentono l’imaging chimicamente specifico delle molecole tramite effetti Raman non lineari. In CRI, due treni di impulsi laser vengono focalizzati e scansionati all’interno di un campione; la differenza di energia tra le frequenze laser è impostata per indirizzare modalità vibrazionali specifiche per le strutture chimiche di interesse. Poiché i processi CRI non sono lineari, un segnale viene generato solo al fuoco del microscopio, consentendo l’imaging tomografico farmacocinetico tridimensionale del tessuto. Nel contesto della cPK, CARS è stato utilizzato per ottenere informazioni strutturali sui tessuti, come la posizione delle strutture cutanee ricche di lipidi15. Al contrario, SRS è stato utilizzato per quantificare la concentrazione molecolare in quanto il suo segnale è lineare con la concentrazione. Per i campioni di pelle ex vivo , è vantaggioso eseguire CARS nella direzione epi16 e SRS in modalità di trasmissione17. Pertanto, i campioni di tessuto sottili consentiranno il rilevamento e la quantificazione del segnale SRS.

Come tessuto modello, l’orecchio del topo nudo presenta diversi vantaggi con piccoli inconvenienti. Un vantaggio è che il tessuto ha già uno spessore di ~ 200-300 μm e non richiede un’ulteriore preparazione del campione. Inoltre, diverse stratificazioni cutanee sono osservate concentrandosi assialmente attraverso un campo visivo (ad esempio, strato corneo, ghiandole sebacee (SG), adipociti e grasso sottocutaneo)16,18. Ciò consente una stima preclinica preliminare delle vie di permeazione cutanea e stime topiche di BA prima di passare a campioni di pelle umana. Tuttavia, il modello di topo nudo presenta limitazioni come la difficoltà di estrapolazione a scenari in vivo a causa delle differenze nella struttura della pelle19. Mentre l’orecchio del topo nudo è un modello eccellente per ottenere risultati preliminari, il modello della pelle umana è il gold standard. Sebbene ci siano stati vari commenti sull’idoneità e l’applicabilità della pelle umana congelata per ricapitolare accuratamente la cinetica di permeazione in vivo 20,21,22, l’uso della pelle umana congelata è un metodo accettato per la valutazione della cinetica di permeazione API in vitro 23,24,25 . Questo protocollo visualizza vari strati di pelle nella pelle di topo e umana mentre quantifica le concentrazioni di API all’interno di strutture ricche di lipidi e povere di lipidi.

Mentre cri è stato utilizzato in numerosi campi per visualizzare specificamente i composti all’interno dei tessuti, ci sono stati sforzi limitati per studiare la cPK dei prodotti farmaceutici applicati localmente. Per valutare il BA/BE topico dei prodotti topici utilizzando CRI, è necessario prima disporre di un protocollo standardizzato per effettuare confronti accurati. Gli sforzi precedenti che utilizzano CRI per la somministrazione di farmaci alla pelle hanno dimostrato variabilità all’interno dei dati. Poiché si tratta di un’applicazione relativamente nuova del CRI, stabilire un protocollo è fondamentale per ottenere risultati affidabili 18,26,27. Questo approccio si rivolge solo a un numero d’onda specifico nella regione biologica silenziosa dello spettro Raman. Tuttavia, la maggior parte delle API e degli ingredienti inattivi hanno spostamenti Raman all’interno della regione delle impronte digitali. Ciò ha precedentemente posto sfide a causa del segnale intrinseco derivante dal tessuto nella regione delle impronte digitali. I recenti progressi laser e computazionali hanno rimosso questa barriera, che può anche essere utilizzata in combinazione con l’approccio presentato qui28. Questo approccio qui presentato consente la quantificazione di un’API, che ha uno spostamento Raman nella regione silenziosa (2.000-2.300 cm-1). Questo non è limitato alle proprietà fisiochimiche del farmaco, che potrebbe essere il caso di alcune metodologie di monitoraggio cPK precedentemente menzionate29.

Il protocollo deve ridurre la variabilità da campione a campione nello spessore della pelle per vari preparati, poiché i campioni di pelle umana spessa produrranno un segnale minimo dopo l’applicazione del prodotto farmaceutico a causa della diffusione della luce da parte del campione spesso. Uno degli obiettivi di questo manoscritto è quello di presentare una metodologia di preparazione dei tessuti che assicuri standard di imaging riproducibili. Inoltre, il sistema CRI è configurato come descritto per ridurre le potenziali fonti di errore e minimizzare il rapporto segnale-rumore. Tuttavia, questo documento non discuterà i principi guida e i meriti tecnici del microscopio CRI in quanto questo è stato precedentemente trattato30. Infine, viene esplorata l’ampia procedura di analisi dei dati per consentire l’interpretazione dei risultati per determinare il successo o il fallimento di un esperimento.

Protocol

L’uso di tessuto auricolare di topo nudo è stato approvato dal Massachusetts General Hospital Institutional Animal Care and Use Committee (IACUC), mentre l’uso di tessuto cutaneo umano è stato approvato dal Massachusetts General Hospital Institutional Review Board (IRB). Secondo i protocolli IACUC, i topi appena eutanasizzati sono stati ottenuti da collaboratori con colonie di topi nudi. Il tessuto umano è stato prelevato da procedure elettive di addominoplastica presso il Massachusetts General Hospital tramite un pro…

Representative Results

L’imaging è considerato di successo se il tessuto non si è mosso in modo significativo in direzione assiale (<10 μm) o laterale al completamento dell'esperimento (Figura 4). Questa è un’indicazione immediata se la misurazione SRS per l’API di interesse non è rappresentativa della profondità iniziale, per la quale la quantificazione è specifica del livello. Ciò è mitigato dall’imaging di z-stack per ogni posizione XY di interesse, con il compromesso che è la risoluzione temporale. S…

Discussion

La valutazione del BA/BE topico è un’area di ricerca che richiede un approccio sfaccettato in quanto nessun singolo metodo può caratterizzare completamente la cPK in vivo . Questo protocollo presenta una metodologia per la valutazione del BA/BE di un prodotto farmaceutico topico basato sull’imaging Raman coerente. Uno dei primi punti che potrebbero essere trascurati è quanto devono essere sottili i campioni di pelle, specialmente per l’imaging SRS a trasmissione quantitativa. Se la pelle è troppo spessa (<em…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Gli autori desiderano ringraziare il Dr. Fotis Iliopoulos e Daniel Greenfield del Gruppo Evans per la loro discussione e correzione di bozze di questo manoscritto. Inoltre, gli autori vorrebbero riconoscere il sostegno di LEO Pharma. La Figura 2 è stata creata con BioRender.com.

Materials

Tissue Preparation
Autoclavable Biohazard Bags FisherBrand 22-044562 As refered to in text: biohazard bags
https://www.fishersci.com/shop/products/fisherbrand-polyethylene-biohazard-autoclave-bags-without-sterilization-indicator-8/22044562?searchHijack=true&searchTerm= 22044562&searchType=RAPID& matchedCatNo=22044562
Cell Culture Buffers: Dulbecco's Phosphate-Buffered Salt Solution 1x Corning MT21030CV As refered to in text: PBS
https://www.fishersci.com/shop/products/corning-cellgro-cell-culture-buffers-dulbecco-s-phosphate-buffered-salt-solution-1x-8/MT21030CV?searchHijack=true&searchTerm= 21-030-cv&searchType= RAPID&matchedCatNo=21-030-cv
Disposable Scalpels Exel International 14-840-00 As refered to in text: scalpel
https://www.fishersci.com/shop/products/exel-international-disposable-scalpels-3/1484000?keyword=true
High Precision 45° Angle Broad Point Tweezers/Forceps Fisherbrand 12-000-132 As refered to in text: forceps
https://www.fishersci.com/shop/products/high-precision-45-angle-broad-point-tweezers-forceps/12000132#?keyword=
Kimwipes Delicate Task Wipers, 1-Ply Kimberly-Clark Professional Kimtech Science 06-666 As refered to in text: task wiper
https://www.fishersci.com/shop/products/kimberly-clark-kimtech-science-kimwipes-delicate-task-wipers-7/06666
Parafilm M Laboratory Wrapping Film Bemis 13-374-12 As refered to in text: parafilm
https://www.fishersci.com/shop/products/curwood-parafilm-m-laboratory-wrapping-film-4/1337412
Petri Dish (35 mm x 10 mm) Fisherbrand FB0875711YZ As refered to in text: small petri dish
https://www.fishersci.com/shop/products/fisherbrand-petri-dishes-specialty-6/FB0875711YZ?keyword=true
Petri Dish (60 mm x 15 mm) Fisherbrand FB0875713A As refered to in text: large petri dish
https://www.fishersci.com/shop/products/fisherbrand-petri-dishes-clear-lid-12/FB0875713A?keyword=true
Surgical Scissors Roboz NC9411473 As refered to in text: scissors
https://www.fishersci.com/shop/products/scissors-327/NC9411473?searchHijack=true&searchTerm= RS-5915SC&searchType=RAPID& matchedCatNo=RS-5915SC
Laser/microscope
650/60 nm BrightLine single-band bandpass filter Semrock As refered to in text: CARS filter – CH2 vibrations (645nm/60nm filter)
Control box IX2-UCB Olympus As refered to in text: Control Box
D700/30m Chroma As refered to in text: CARS filter – deuterated band
https://www.chroma.com/products/parts/d700-30m
DeepSee Insight Spectra-Physics As refered to in text: Laser
https://www.spectra-physics.com/f/insight-x3-tunable-laser
Digital Handheld Optical Power and Energy Meter Console ThorLabs PM100D As refered to in text: power meter
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3341
Fluoview Software Olympus As refered to in text: Microscope Control software
Frosted Microscope Slides FisherBrand As refered to in text: microscope slides
https://www.fishersci.com/shop/products/fisherbrand-frosted-microscope-slides-4/22265446
FV1000 Olympus As refered to in text: Microscope
Incubation Chamber Tokai Hit GM-800 As refered to in text: incubation chamber
Integrating Sphere Photodiode Power Sensor ThorLabs S142C As refered to in text: photodiode
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3341
Power supply FV31-PSU Olympus As refered to in text: Power Supply
Precision 4063, 80MHz Dual Channel Function Generator BK Precision As refered to in text: function generator
ProScan – Precision Microscope Automation Prior Scientific Instruments As refered to in text: stage controller
https://www.prior.com/microscope-automation/inverted-microscope-systems/proscan-linear-stage-highest-precision-microscope-automation
SecureSeal Imaging Spacers Grace Biolabs 654004 As refered to in text: spacer
https://gracebio.com/product/secureseal-imaging-spacers-654004/
SRS Detection Kit APE As refered to in text: SRS detector
UPLSAPO 20X NA:0.75 Olympus As refered to in text: 20X Objective
https://www.olympus-lifescience.com/en/objectives/uplsapo/
Lipid/Drug Imaging
 35 mm Dish, No. 0 Uncoated Coverslip, 14 mm Glass Diameter MatTek Corporation NC9711297 As refered to in text: Glass bottom dish
https://www.fishersci.com/shop/products/glass-bottom-mircrowell-dish/nc9711297
Cotton-tipped applicators FisherBrand As refered to in text: Cotton-tipped applicator
Distriman Postive Displacement Pipette Gilson As refered to in text: Postive Displacement Pipette
https://www.fishersci.com/shop/products/gilson-distriman-positive-displacement-repetitive-pipette/F164001G#?keyword=
Distriman Postive Displacement Pipette Tips Gilson As refered to in text: Tips for pipette
https://www.fishersci.com/shop/products/gilson-distritip-syringes-6/f164100g?keyword=true
Data Analysis
FIJI Open-source As refered to in text: FIJI/ImageJ
https://imagej.net/software/fiji/
Jupyter-Lab open-source As refered to in text: JupyterLab
https://jupyter.org/
Rstudio Open-source As refered to in text: Rstudio
https://www.rstudio.com/

References

  1. Finnin, B., Walters, K. A., Franz, T. J., Benson, H. E., Watkinson, A. C. In vitro skin permeation methodology. In Transdermal and topical drug delivery: principles and methodology. Transdermal and topical drug delivery: principles and practice. , 85-108 (2012).
  2. Shin, S. H., et al. On the road to development of an in vitro permeation test (IVPT) model to compare heat effects on transdermal delivery systems: exploratory studies with nicotine and fentanyl. Pharmaceutical Research. 34 (9), 1817-1830 (2017).
  3. Hossain, A., et al. Preparation, characterisation, and topical delivery of terbinafine. Pharmaceutics. 11 (10), 548 (2019).
  4. Santos, L. L., Swofford, N. J., Santiago, B. G. In vitro permeation test (IVPT) for pharmacokinetic assessment of topical dermatological formulations. Current Protocols in Pharmacology. 91 (1), 79 (2020).
  5. Iliopoulos, F., Caspers, P. J., Puppels, G. J., Lane, M. E. Franz cell diffusion testing andquantitative confocal Raman spectroscopy: In vitro-in vivo correlation. Pharmaceutics. 12 (9), 887 (2020).
  6. Cordery, S., et al. Topical bioavailability of diclofenac from locally-acting, dermatological formulations. International Journal of Pharmaceutics. 529 (1-2), 55-64 (2017).
  7. Pensado, A., et al. Stratum corneum sampling to assess bioequivalence between topicalacyclovir products. Pharmaceutical Research. 36 (12), 1-16 (2019).
  8. Zhang, Y., et al. Dermal delivery of niacinamide-in vivo studies. Pharmaceutics. 13 (5), 726 (2021).
  9. Bodenlenz, M., et al. Open flow microperfusion as a dermal pharmacokinetic approach to evaluate topical bioequivalence. Clinical Pharmacokinetics. 56 (1), 91-98 (2017).
  10. Eirefelt, S., et al. Evaluating dermal pharmacokinetics and pharmacodymanic effect of soft topical PDE4 inhibitors:Open flow microperfusion and skin biopsies. Pharmaceutical Research. 37 (12), 1-12 (2020).
  11. Stagni, G., O’Donnell, D., Liu, Y. J., Kellogg, J. D. L., Shepherd, A. M. Iontophoretic current and intradermal microdialysis recovery in humans. Journal of Pharmacological and Toxicological Methods. 41 (1), 49-54 (1999).
  12. Garcia Ortiz, P., Hansen, S. H., Shah, V. P., Menne, T., Benfeldt, E. Impact of adultatopic dermatitis on topical drug penetration: assessment by cutaneous microdialysis and tape stripping. Acta Dermato-Venereologica. 89 (1), 33-38 (2009).
  13. Joshi, A., Patel, H., Joshi, A., Stagni, G. Pharmacokinetic applications of cutaneous microdialysis: Continuous+intermittent vs continuous-only sampling. Journal of Pharmacological and Toxicological Methods. 83, 16-20 (2017).
  14. Kuzma, B. A., et al. Evaluation of local bioavailability of metronidazole from topical formulations using dermal microdialysis: Preliminary study in a Yucatan mini-pig model. European Journal of Pharmaceutical Sciences. 159, 105741 (2021).
  15. Begley, R., Harvey, A., Byer, R. L.Coherent anti-Stokes Raman spectroscopy. Applied Physics Letters. 25 (7), 387-390 (1974).
  16. Evans, C. L., et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America. 102 (46), 16807-16812 (2005).
  17. Hill, A. H., Manifold, B., Fu, D. Tissue imaging depth limit of stimulated Raman scattering microscopy. Biomedical Optics Express. 11 (2), 762-774 (2020).
  18. Feizpour, A., Marstrand, T., Bastholm, L., Eirefelt, S., Evans, C. L. Label-free quantification of pharmacokinetics in skin with stimulated Raman scattering microscopy and deep learning. Journal of Investigative Dermatology. 141 (2), 395-403 (2021).
  19. Ghosh, B., Reddy, L. H., Kulkarni, R. V., Khanam, J. Comparison of skin permeability of drugs in mice and human cadaver skin. Indian Journal of Experimental Biology. 38 (1), 42-45 (2000).
  20. Nielsen, J. B., Plasencia, I., Sørensen, J. A., Bagatolli, L. Storage conditions of skin affect tissue structure and subsequent in vitro percutaneous penetration. Skin Pharmacology and Physiology. 24 (2), 93-102 (2011).
  21. Barbero, A. M., Frasch, H. F. Effect of frozen human epidermis storage duration and cryoprotectant on barrier function using two model compounds. Skin Pharmacology and Physiology. 29 (1), 31-40 (2016).
  22. Babu, R., et al. The influence of various methods of cold storage of skin on the permeation of melatonin and nimesulide. Journal of Controlled Release. 86 (1), 49-57 (2003).
  23. Skelly, J. P., et al. FDA and AAPS report of the workshop on principles and practices of in vitro percutaneous penetration studies: relevance to bioavailability and bioequivalence. Pharmaceutical Research. 4 (3), 265-267 (1987).
  24. OECD. Guidance document for the conduct of skin absorption studies. OECD. , (2004).
  25. OECD. Test no. 428: Skin absorption: In vitro method. OECD. , (2004).
  26. Saar, B. G., et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science. 330 (6009), 1368-1370 (2010).
  27. Saar, B. G., Contreras-Rojas, L. R., Xie, X. S., Guy, R. H. Imaging drug delivery to skin with stimulated Raman scattering microscopy. Molecular Pharmaceutics. 8 (3), 969-975 (2011).
  28. Pence, I. J., Kuzma, B. A., Brinkmann, M., Hellwig, T., Evans, C. L. Multi-windowsparse spectral sampling stimulated Raman scattering microscopy. Biomedical Optics Express. 12 (10), 6095-6114 (2021).
  29. Herkenne, C., et al. In vivo methods for the assessment of topical drug bioavailability. Pharmaceutical Research. 25 (1), 87-103 (2008).
  30. Alfonso-Garcıa, A., Mittal, R., Lee, E. S., Potma, E. O. Biological imaging with coherent Raman scattering microscopy: a tutorial. Journal of Biomedical Optics. 19 (7), 071407 (2014).
  31. Osseiran, S., et al. Longitudinal monitoring of cancer cell subpopulations in monolayers, 3D spheroids, and xenografts using the photoconvertible dye DiR. Scientific Reports. 9 (1), 1-10 (2019).
  32. Evennett, P. Kohler illumination: a simple interpretation. Proceedings of the Royal Microscopical Society. 28 (4), 189-192 (1983).
  33. Sanderson, J. Fundamentals of microscopy. Current Protocols in Mouse Biology. 10 (2), 76 (2020).
  34. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  35. Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering. 9 (3), 90-95 (2007).
  36. Wickham, H. . ggplot2: Elegant Graphics for Data Analysis. , (2016).
  37. Kim, H., Han, S., Cho, Y. S., Yoon, S. K., Bae, K. Development of R packages:’Non-Compart’ and ‘ncar’ for noncompartmental analysis (NCA). Translational and Clinical Pharmacology. 26 (1), 10-15 (2018).
check_url/fr/63264?article_type=t

Play Video

Citer Cet Article
Kuzma, B. A., Pence, I. J., Ho, A., Evans, C. L. Visualizing and Quantifying Pharmaceutical Compounds within Skin using Coherent Raman Scattering Imaging. J. Vis. Exp. (177), e63264, doi:10.3791/63264 (2021).

View Video