Summary

طريقة كهربية فعالة وفعالة من حيث التكلفة لدراسة مسارات الإشارات الأولية المعتمدة على السيليوم في سلائف الخلايا الحبيبية

Published: November 30, 2021
doi:

Summary

هنا ، نقدم بروتوكولا كهربائيا قابلا للتكرار في المختبر للتلاعب الجيني بسلائف الخلايا الحبيبية المخيخية الأولية (GCPs) وهو فعال من حيث التكلفة وفعال وقابل للحياة. علاوة على ذلك ، يوضح هذا البروتوكول أيضا طريقة مباشرة للدراسة الجزيئية لمسارات إشارات القنفذ الأولية المعتمدة على السيليوم في خلايا GCP الأولية.

Abstract

السيليوم الأولي هو عضية إشارات حرجة موجودة في كل خلية تقريبا تنقل محفزات إشارات القنفذ (Hh) من سطح الخلية. في سلائف الخلايا الحبيبية (GCP) ، يعمل السيليوم الأولي كمركز إشارات محوري ينظم تكاثر خلايا السلائف عن طريق تعديل مسار إشارات Hh. يتم تسهيل التحقيق في آلية إشارات Hh الأولية المعتمدة على السيليوم من خلال التلاعب الجيني في المختبر لمكونات المسار لتصور توطينها الديناميكي إلى السيليوم الأولي. ومع ذلك ، فإن نقل الجينات المحورة في الثقافات الأولية ل GCPs باستخدام طرق electroporation المعروفة حاليا مكلف بشكل عام وغالبا ما يؤدي إلى انخفاض صلاحية الخلايا وكفاءة النقل غير المرغوب فيها. تقدم هذه الورقة بروتوكولا كهربائيا فعالا وفعالا من حيث التكلفة وبسيطا يوضح كفاءة نقل عالية تبلغ ~ 80-90٪ وجدوى الخلية المثلى. هذه طريقة تعديل وراثي بسيطة وقابلة للتكرار وفعالة تنطبق على دراسة مسار إشارات القنفذ الأولي المعتمد على السيليوم في مزارع GCP الأولية.

Introduction

تستخدم GCPs المخيخية على نطاق واسع لدراسة آلية مسار إشارات Hh في أنواع الخلايا السلفية العصبية بسبب وفرتها العالية وحساسيتها العالية لمسار إشارات Hh في الجسم الحي1,2,3,4. في GCPs ، يعمل السيليوم الأولي كمركز محوري لنقل إشارة Hh5 الذي ينظم تكاثر خلايا السلائف6,7,8. غالبا ما يكون التصور المختبري لمكونات إشارات Hh على السيليوم الأساسي أمرا صعبا بسبب انخفاض مستوياتها القاعدية الذاتية. وبالتالي ، فإن تعديل الجينات المحورة لمستويات التعبير عن البروتين ووضع علامات الفلوروفور على الجين محل الاهتمام هي طرق مفيدة لدراسة المسار بدقة جزيئية. ومع ذلك، فإن التلاعب الجيني بالمزارع الأولية لبرنامج GCP باستخدام نهج النقل القائمة على الجسيمات الشحمية غالبا ما يؤدي إلى انخفاض كفاءة النقل، مما يعوق إجراء المزيد من التحقيقات الجزيئية9. يزيد التفريغ الكهربائي من الكفاءة ولكنه يتطلب عادة كواشف كهربائية باهظة خاصة بالبائع ومقيدة بنوع الخلية10.

تقدم هذه الورقة طريقة كهربية عالية الكفاءة وفعالة من حيث التكلفة لمعالجة مكونات مسار إشارات Hh في الثقافات الأولية ل GCP. باستخدام بروتوكول الإلكتروبوراتيون المعدل هذا، تم تسليم بروتين الفلورسنت الأخضر (GFP) الموسوم بالجين المتحول السلس (pEGFP-Smo) بكفاءة إلى GCPs وحقق معدلات عالية من بقاء الخلايا ونقلها (80-90٪). وعلاوة على ذلك، وكما يتضح من التلطيخ الكيميائي المناعي، أظهرت GCPs المنقولة حساسية عالية للتنشيط الناجم عن الناهض السلس لمسار إشارات Hh عن طريق الاتجار ب EGFP-Smo إلى الأهداب الأولية. يجب أن يكون هذا البروتوكول قابلا للتطبيق بشكل مباشر ومفيدا للتجارب التي تنطوي في المختبر على تعديل جيني لأنواع الخلايا التي يصعب نقلها ، مثل مزارع الخلايا الأولية البشرية والقوارض ، وكذلك الخلايا الجذعية متعددة القدرات التي يسببها الإنسان.

Protocol

تم تنفيذ جميع الإجراءات المتعلقة بالحيوانات وفقا للمبادئ التوجيهية للتعامل مع الحيوانات والبروتوكول الذي وافقت عليه وزارة الصحة في هونغ كونغ. تم الحصول على تراخيص التجارب على الحيوانات بعد قانون الحيوانات (مراقبة التجارب) (الفصل 340) من وزارة الصحة ، حكومة هونغ كونغ. تم تنفيذ العمل الحيوان…

Representative Results

باستخدام Opti-MEM (انظر جدول المواد) ككاشف عالمي ، يمكن لمنهجية electroporation المقترحة هذه تحقيق كفاءة عالية باستمرار في الكهربية بنسبة ~ 80-90٪ (الشكل 1). تم تحديد كفاءة التفريغ الكهربائي لناقل Smo-EGFP في DIV 2 بعد الإلكتروبورات عن طريق القياس الكمي للنسبة المئوية للخلايا الإيجاب?…

Discussion

عادة ما يرتبط نقل الجينات المحورة في ثقافة GCP الأولية عن طريق طريقة electroporation بانخفاض صلاحية الخلايا وضعف كفاءة النقل9,10. تقدم هذه الورقة بروتوكولا كهربائيا فعالا من حيث التكلفة وقابلا للتكرار أظهر كفاءة عالية وقابلية للتطبيق. بالإضافة إلى ذلك ، نعرض أيضا طر?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

تم دعم هذه الدراسة من قبل صندوق HKBU التأسيسي ومنحة بدء التشغيل من المستوى 2 (RG-SGT2/18-19/SCI/009) ، ومجلس المنح البحثية – صندوق البحوث التعاونية (CRF-C2103-20GF) إلى C.H.H. Hor.

Materials

GCP Culture
B27 supplement Life Technologies LTD 17504044
Cell strainer, 70 µm Corning 352350
DNase I from bovine pancreas Roche 11284932001
Earle’s Balanced Salt Solution Gibco, Life Technologies 14155063
FBS, qualified Thermo Scientific SH30028.02
GlutamMAXTM-I ,100x Gibco, Life Technologies 35050061 L-glutamine substitute
L-cysteine Sigma Aldrich C7352
Matrigel BD Biosciences 354277 Basement membrane matrix
Neurobasal Gibco, Life Technologies 21103049
Papain,suspension Worthington Biochemical Corporation LS003126
Poly-D-lysine Hydrobromide Sigma Aldrich P6407
SAG Cayman Chemical 11914-1 Smoothened agonist
IF staining
Bovine Serum Albumin Sigma Aldrich A7906
Paraformaldehyde Sigma Aldrich P6148
Triton X-100 Sigma Aldrich X100
Primary antibody mix
Anti-GFP-goat ab Rockland 600-101-215 Dilution Factor: 1 : 1000
Anti-Arl13b mouse monoclonal ab NeuroMab 75-287 Dilution Factor: 1 : 1000
Anti-Pax6 rabbit polyclonal ab Covance PRB-278P Dilution Factor: 1 : 1000
Secondary antibody mix
Alexa Fluor 488 donkey anti-goat IgG Invitrogen A-11055 Dilution Factor: 1 : 1000
Alexa Fluor 555 donkey anti-mouse IgG Invitrogen A-31570 Dilution Factor: 1 : 1000
Alexa Fluor 647 donkey anti-rabbit IgG Invitrogen A-31573 Dilution Factor: 1 : 1000
DAPI Thermo Scientific 62247 Dilution Factor: 1 : 1000
Electroporation
CU 500 cuvette chamber Nepagene CU500
EPA Electroporation cuvette (2 mm gap) Nepagene EC-002
Opti-MEM Life Technologies LTD 31985070 reduced-serum medium for transfection
pEGFP-mSmo Addgene 25395
Super Electroporator NEPA21 TYPE II In Vitro and In Vivo Electroporation Nepagene NEPA21 electroporator

References

  1. Chang, C. H., et al. Atoh1 controls primary cilia formation to allow for SHH-triggered granule neuron progenitor proliferation. Developmental Cell. 48 (2), 184-199 (2019).
  2. Dahmane, N., Ruizi Altaba, A. Sonic Hedgehog regulates the growth and patterning of the cerebellum. Development. 126 (14), 3089-3100 (1999).
  3. Lewis, P. M., Gritti-Linde, A., Smeyne, R., Kottmann, A., Mcmahon, A. P. Sonic Hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Biologie du développement. 270 (2), 393-410 (2004).
  4. Wechsler-Reya, R. J., Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 22 (1), 103-114 (1999).
  5. Bangs, F., Anderson, K. V. Primary cilia and mammalian Hedgehog signaling. Cold Spring Harbor Perspectives in Biology. 9 (5), 028175 (2017).
  6. Hor, C. H. H., Lo, J. C. W., Cham, A. L. S., Leung, W. Y., Goh, E. L. K. Multifaceted functions of Rab23 on primary cilium- and Hedgehog signaling-mediated cerebellar granule cell proliferation. Journal of Neuroscience. 41 (32), 6850-6863 (2021).
  7. Han, Y. G., et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nature Medicine. 15 (9), 1062-1065 (2009).
  8. Spassky, N., et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Biologie du développement. 317 (1), 246-259 (2008).
  9. Wang, T., Larcher, L., Ma, L., Veedu, R. N. Systematic screening of commonly used commercial transfection reagents towards efficient transfection of single-stranded oligonucleotides. Molecules. 23 (10), 2564 (2018).
  10. Chicaybam, L., et al. An efficient electroporation protocol for the genetic modification of mammalian cells. Frontiers in Bioengineering and Biotechnology. 4, 99 (2017).
  11. Lee, H. Y., Greene, L. A., Mason, C. A., Chiara Manzini, M. Isolation and culture of post-natal mouse cerebellar granule neuron progenitor cells and neurons. Journal of Visualized Experiments: JoVE. (23), e990 (2009).
  12. Mizoguchi, T., et al. Impaired cerebellar development in mice overexpressing VGF. Neurochemical Research. 44 (2), 374-387 (2019).
  13. Zhou, Y. Confocal imaging of nerve cells. Current Laboratory Methods in Neuroscience Research. , 235-247 (2014).
  14. Corbit, K. C., et al. Vertebrate Smoothened functions at the primary cilium. Nature. 437 (7061), 1018-1021 (2005).
check_url/fr/63283?article_type=t

Play Video

Citer Cet Article
Lo, J. C. W., Wong, W. L., Hor, C. H. H. Efficient and Cost Effective Electroporation Method to Study Primary Cilium-Dependent Signaling Pathways in the Granule Cell Precursor. J. Vis. Exp. (177), e63283, doi:10.3791/63283 (2021).

View Video