Summary

一种报告基因检测法,用于分析哺乳动物细胞中内旋微RNA成熟

Published: June 16, 2022
doi:

Summary

我们开发了一种内旋microRNA生物发生报告基因检测方法,用于具有四种质粒 的体外 细胞:一种具有内旋性miRNA,一种具有靶标,一种用于过表达调节蛋白,另一种用于Renilla荧光素酶。miRNA经过处理,可以通过与靶序列结合来控制荧光素酶的表达。

Abstract

微RNA(miRNA)是短RNA分子,在真核生物中广泛存在。大多数miRNA是从内含子转录而来的,它们的成熟涉及细胞核中不同的RNA结合蛋白。成熟的miRNA经常介导基因沉默,这已成为理解转录后事件的重要工具。除此之外,它还可以被探索为一种有前途的基因疗法方法。然而,目前缺乏评估哺乳动物细胞培养物中miRNA表达的直接方法。在这里,我们描述了一种高效而简单的方法,该方法通过确认其与靶序列的相互作用来帮助确定miRNA生物发生和成熟。此外,该系统允许使用多西环素诱导的启动子将外源性miRNA成熟与其内源性活性分离,该启动子能够以高效率和低成本控制初级miRNA(pri-miRNA)转录。该工具还允许在单独的质粒中用RNA结合蛋白进行调节。除了与各种不同的miRNA及其各自的靶标一起使用外,只要这些细胞系适合转染,它还可以适应不同的细胞系。

Introduction

前体mRNA剪接是真核生物1中基因表达调控的重要过程。成熟RNA中内含子的去除和外显子的结合是由剪接体催化的,剪接体是一种2兆达尔顿的核糖核蛋白复合物,由5个snRNA(U1,U2,U4,U5和U6)以及100多个蛋白质23组成。剪接反应以共转录方式发生,并且剪接体在每个新内含子处组装,由外显子 – 内含子边界和内含子4内的保守剪接位点的识别引导。不同的内含子可能具有不同的剪接速率,尽管剪接体复合物及其组分具有显着的守恒。除了剪接位点保存的差异外,分布在内含子和外显子上的调节序列可以引导RNA结合蛋白(RBP)并刺激或抑制剪接56。HuR是一种普遍表达的RBP,是控制mRNA稳定性7的重要因素。我们小组先前的结果表明,HuR可以与含有miRNA的内含子结合,表明该蛋白可能是促进miRNA加工和成熟的重要因素,也导致产生替代剪接同种型689

许多微纳(miRNA)是从内旋序列编码的。虽然有些是内含子的一部分,但其他的被称为“mirtrons”,由整个内含子1011形成。miRNA是短的非编码RNA,长度为12的18至24个核苷酸。它们的成熟序列与mRNA中的靶序列具有部分或全部互补性,因此影响翻译和/或mRNA衰变率。miRNA和靶标的组合驱动细胞获得不同的结果。几种miRNA可以驱使细胞产生促肿瘤或抗肿瘤表型13。致癌性miRNA通常靶向触发抑制特征的mRNA,导致细胞增殖,迁移和侵袭增加14。另一方面,肿瘤抑制性miRNA可能靶向致癌性mRNA或与细胞增殖增加相关的mRNA。

miRNA的加工和成熟也取决于它们的来源。大多数内源性miRNA是在微处理器的参与下处理的,微处理器由核糖核酸酶Drosha和蛋白质辅助因子12形成。米氏物以剪接体的活性进行加工,独立于Drosha15。考虑到在内含子中发现的miRNA的高频,我们假设参与剪接的RNA结合蛋白也可以促进这些miRNA的加工和成熟。值得注意的是,RBP hnRNP A2 / B1已经与微处理器和miRNA生物发生16相关联。

我们之前已经报道过,几种RNA结合蛋白,如hnRNP和HuR,通过质谱17与内源性miRNA相关。使用免疫沉淀和计算机分析9证实了HuR(ELAVL1)与miR-17-92内旋簇miRNA的关联。miR-17-92是一种内源性miRNA簇,由6个miRNA组成,在不同癌症中表达增加1819。该簇也称为“oncomiR-1”,由 miR-17miR-18a、miR-19a、miR-20miR-19b 和 miR-92a组成。HuR表达的增加刺激了miR-19amiR-19b合成9。由于该簇两侧的内源性区域与HuR相关,我们开发了一种方法来研究该蛋白是否可以调节miR-19amiR-19b的表达和成熟。对我们的假设的一个重要预测是,作为一种调节蛋白,HuR可以促进miRNA生物发生,导致表型改变。一种可能性是miRNA是通过HuR的刺激处理的,但不会成熟和功能化,因此,蛋白质的作用不会直接影响表型。因此,我们开发了一种剪接报告基因检测法,以研究像HuR这样的RBP是否会影响内源性miRNA的生物发生和成熟。通过确认miRNA处理和成熟,我们的测定显示了与靶序列的相互作用以及成熟和功能性miRNA的产生。在我们的测定中,我们将内旋性miRNA簇的表达与荧光素酶质粒偶联,以检查培养细胞中的miRNA靶标结合。

Protocol

图 1 描述了此处描述的协议的概述。 1. 质粒构建 pCAGGS-Cre:该质粒由E.马凯耶夫博士21提供。 17-92:使用每个特定引物的0.5μM(材料表),150 ng的cDNA,1 mM dNTP,1x Taq PCR缓冲液和5 U的高保真Taq DNA聚合酶,通过PCR通过PCR前扩增。执行无模板对照PCR反应(用水代替cDNA)以检查DNA污染。…

Representative Results

我们最初的假设是,HuR可以通过与其前miRNA序列结合来促进内源性miRNA生物发生。因此,HuR表达与miR-17-92簇生物发生的联系可能指向控制这些miRNA成熟的新机制。在三种不同的细胞系中证实了转染PFLAG-HuR时胡氏环氧铈的过表达:HeLa,BCPAP和HEK-293T(图2)。作为对照,使用未转染的细胞和用空的pfLAG载体转染的细胞。重要的是,我们观察到这些细胞中的HuR过表达刺激miR-…

Discussion

前mRNA剪接是基因表达调控的重要过程,其控制可以触发对细胞表型修饰的强烈影响2223。超过70%的miRNA是从人类内含子转录而来的,我们假设它们的加工和成熟可以通过剪接调节蛋白2425来促进。我们开发了一种分析内源性miRNA处理和功能的方法。我们的测定使用四种不同的质粒,并允许我们测试内源性和?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者感谢E.马凯耶夫(新加坡南洋理工大学)的海拉克雷细胞和pRD-RIPE和pCAGGS-Cre质粒。我们感谢埃德娜·木村、卡罗琳娜·珀塞尔·戈伊斯、吉塞拉·拉莫斯、露西亚·罗塞蒂·洛佩斯和安塞尔莫·莫里斯科特的支持。

Materials

Recombinant DNA
pCAGGS-Cre (Cre- encoding plasmid) A kind gift from E. Makeyev from Khandelia et al., 2011
pFLAG-HuR Generated during this work
pmiRGLO-RAP-IB Generated during this work
pmiRGLO-scrambled Generated during this work
pRD-miR-17-92 Generated during this work
pRD-RIPE-donor A kind gift from E. Makeyev from Khandelia et al., 2011
pTK-Renilla Promega E2241
Antibodies
anti-B-actin Sigma Aldrich A5316
anti-HuR Cell Signaling mAb 12582
IRDye 680CW Goat anti-mouse IgG Li-Cor Biosciences 926-68070
IRDye 800CW Goat anti-rabbit IgG Li-Cor Biosciences 929-70020
Experimental Models: Cell Lines
HeLa-Cre A kind gift from E. Makeyev from Khandelia et al., 2011
HeLa-Cre miR17-92 Generated during this work
HeLa-Cre miR17-92-HuR Generated during this work
HeLa-Cre miR17-92-HuR-luc Generated during this work
HeLa-Cre miR17-92-luc Generated during this work
HeLa-Cre miR17-92-scrambled Generated during this work
Chemicals and Peptides
DMEM/high-glucose Thermo Fisher Scientific 12800-017
Doxycycline BioBasic MB719150
Dual-Glo Luciferase Assay System Promega E2940
EcoRI Thermo Fisher Scientific ER0271
EcoRV Thermo Fisher Scientific ER0301
Geneticin Thermo Fisher Scientific E859-EG
L-glutamine Life Technologies
Opti-MEM I Life Technologies 31985-070
pFLAG-CMV™-3 Expression Vector Sigma Aldrich E6783
pGEM-T Promega A3600
Platinum Taq DNA polymerase Thermo Fisher Scientific 10966-030
pmiR-GLO Promega E1330
Puromycin Sigma Aldrich P8833
RNAse OUT Thermo Fisher Scientific 752899
SuperScript IV kit Thermo Fisher Scientific 18091050
Trizol-LS reagent Thermo Fisher 10296-028
trypsin/EDTA 10X Life Technologies 15400-054
XbaI Thermo Fisher Scientific 10131035
XhoI Promega R616A
Oligonucleotides
forward RAP-1B pmiRGLO Exxtend TCGAGTAGCGGCCGCTAGTAAG
CTACTATATCAGTTTGCACAT
reverse RAP-1B pmiRGLO Exxtend CTAGATGTGCAAACTGATATAGT
AGCTTACTAGCGGCCGCTAC
forward scrambled pmiRGLO Exxtend TCGAGTAGCGGCCGCTAGTAA
GCTACTATATCAGGGGTAAAAT
reverse scrambled pmiRGLO Exxtend CTAGATTTTACCCCTGATATAGT
AGCTTACTAGCGGCCGCTAC
forward HuR pFLAG Exxtend GCCGCGAATTCAATGTCTAAT
GGTTATGAAGAC
reverse HuR pFLAG Exxtend GCGCTGATATCGTTATTTGTG
GGACTTGTTGG
forward pre-miR-1792 pRD-RIPE Exxtend ATCCTCGAGAATTCCCATTAG
GGATTATGCTGAG
reverse pre-miR-1792 pRD-RIPE Exxtend ACTAAGCTTGATATCATCTTG
TACATTTAACAGTG
forward snRNA U6 (RNU6B) Exxtend CTCGCTTCGGCAGCACATATAC
reverse snRNA U6 (RNU6B) Exxtend GGAACGCTTCACGAATTTGCGTG
forward B-Actin qPCR Exxtend ACCTTCTACAATGAGCTGCG
reverse B-Actin qPCR Exxtend CCTGGATAGCAACGTACATGG
forward HuR qPCR Exxtend ATCCTCTGGCAGATGTTTGG
reverse HuR qPCR Exxtend CATCGCGGCTTCTTCATAGT
forward pre-miR-1792 qPCR Exxtend GTGCTCGAGACGAATTCGTCA
GAATAATGTCAAAGTG
reverse pre-miR-1792 qPCR Exxtend TCCAAGCTTAAGATATCCCAAAC
TCAACAGGCCG
Software and Algorithms
Prism 8 for Mac OS X Graphpad https://www.graphpad.com
ImageJ National Institutes of Health http://imagej.nih.gov/ij

References

  1. Wilkinson, M. E., Charenton, C., Nagai, K. RNA splicing by the spliceosome. Annual Review of Biochemistry. 89, 359-388 (2020).
  2. Will, C. L., Luhrmann, R. Spliceosome structure and function. Cold Spring Harbor Perspectives in Biology. 3 (7), 003707 (2011).
  3. Zhang, X., et al. An atomic structure of the human spliceosome. Cell. 169 (5), 918-929 (2017).
  4. Staley, J. P., Guthrie, C. Mechanical devices of the spliceosome: Motors, clocks, springs, and things. Cell. 92 (3), 315-326 (1998).
  5. Kornblihtt, A. R., et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nature Reviews Molecular Cell Biology. 14 (3), 153-165 (2013).
  6. Wang, Y., et al. A complex network of factors with overlapping affinities represses splicing through intronic elements. Nature Structural & Molecular Biology. 20 (1), 36-45 (2013).
  7. Mukherjee, N., et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Molecular Cell. 43 (3), 327-339 (2011).
  8. Pandit, S., et al. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Molecular Cell. 50 (2), 223-235 (2013).
  9. Gatti da Silva, G. H., Dos Santos, M. G. P., Nagasse, H. Y., Coltri, P. P. Human antigen R (HuR) facilitates miR-19 synthesis and affects cellular kinetics in papillary thyroid cancer. Cellular Physiology and Biochemistry. 56, 105-119 (2022).
  10. Westholm, J. O., Lai, E. C. Mirtrons: MicroRNA biogenesis via splicing. Biochimie. 93 (11), 1897-1904 (2011).
  11. Michlewski, G., Cáceres, J. F. Post-transcriptional control of miRNA biogenesis. RNA. 25 (1), 1-16 (2019).
  12. Bartel, D. P. MicroRNAs: Target recognition and regulatory functions. Cell. 136 (2), 215-233 (2009).
  13. Esquela-Kerscher, A., Slack, F. J. Oncomirs – MicroRNAs with a role in cancer. Nature Reviews Cancer. 6 (4), 259-269 (2006).
  14. Lin, S., Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer. 15 (6), 321-333 (2015).
  15. Curtis, H. J., Sibley, C. R., Wood, M. J. Mirtrons, an emerging class of atypical miRNA. Wiley Interdisciplinary Reviews. RNA. 3 (5), 617-632 (2012).
  16. Alarcon, C. R., et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 162 (6), 1299-1308 (2015).
  17. Paiva, M. M., Kimura, E. T., Coltri, P. P. miR18a and miR19a recruit specific proteins for splicing in thyroid cancer cells. Cancer Genomics and Proteomics. 14 (5), 373-381 (2017).
  18. He, L., et al. A microRNA polycistron as a potential human oncogene. Nature. 435 (7043), 828-833 (2005).
  19. Olive, V., et al. miR-19 is a key oncogenic component of mir-17-92. Genes & Development. 23 (24), 2839-2849 (2009).
  20. Livak, K. J., Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25 (4), 402-408 (2001).
  21. Khandelia, P., Yap, K., Makeyev, E. V. Streamlined platform for short hairpin RNA interference and transgenesis in cultured mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 108 (31), 12799-12804 (2011).
  22. Huelga, S. C., et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Reports. 1 (2), 167-178 (2012).
  23. Karni, R., et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nature Structural & Molecular Biology. 14 (3), 185-193 (2007).
  24. Franca, G. S., Vibranovski, M. D., Galante, P. A. Host gene constraints and genomic context impact the expression and evolution of human microRNAs. Nature Communications. 7, 11438 (2016).
  25. Havens, M. A., Reich, A. A., Hastings, M. L. Drosha promotes splicing of a pre-microRNA-like alternative exon. PLoS Genetics. 10 (5), 1004312 (2014).
  26. Grammatikakis, I., Abdelmohsen, K., Gorospe, M. Posttranslational control of HuR function. Wiley Interdisciplinary Reviews. RNA. 8 (1), (2017).
  27. Chang, S. H., et al. ELAVL1 regulates alternative splicing of eIF4E transporter to promote postnatal angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 111 (51), 18309-18314 (2014).
  28. Huang, Y. H., et al. Delivery of therapeutics targeting the mRNA-binding protein HuR using 3DNA nanocarriers suppresses ovarian tumor growth. Recherche en cancérologie. 76 (6), 1549-1559 (2016).
  29. Wang, W., Caldwell, M. C., Lin, S., Furneaux, H., Gorospe, M. HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. The EMBO Journal. 19 (10), 2340-2350 (2000).
  30. Guo, X., Connick, M. C., Vanderhoof, J., Ishak, M. A., Hartley, R. S. MicroRNA-16 modulates HuR regulation of cyclin E1 in breast cancer cells. International Journal of Molecular Sciences. 16 (4), 7112-7132 (2015).

Play Video

Citer Cet Article
Gatti da Silva, G. H., Coltri, P. P. A Reporter Assay to Analyze Intronic microRNA Maturation in Mammalian Cells. J. Vis. Exp. (184), e63498, doi:10.3791/63498 (2022).

View Video