Summary

連続フローPCRマイクロ流体チップにおける大 腸菌 の増幅とキャピラリー電気泳動システムによる検出

Published: November 21, 2023
doi:

Summary

このプロトコルでは、マイクロ流体チップに基づいて連続フローポリメラーゼ鎖システムを構築する方法と、ラボでキャピラリー電気泳動システムを構築する方法について説明します。ラボでの核酸分析のための簡単な方法を紹介します。

Abstract

ポリメラーゼ連鎖反応(PCR)は、生体分子診断において重要な役割を果たしてきた標的遺伝子の増幅に用いられる従来の方法です。しかし、従来のPCRは温度変化効率が低いため、非常に時間がかかります。本研究では、マイクロ流体チップを用いた連続フローPCR(CF-PCR)システムを提案します。増幅時間は、異なる温度に設定されたヒーターに配置されたマイクロチャネルにPCR溶液を流すことで大幅に短縮できます。さらに、キャピラリー電気泳動(CE)は、陽性および偽陽性のPCR産物を区別するための理想的な方法であるため、DNA断片の効率的な分離を達成するためにCEシステムが構築されました。本稿では、自社構築のCF-PCR装置による大腸菌増幅過程と、CEによるPCR産物の検出について述べる。その結果、大腸菌の標的遺伝子を10分以内に増幅することに成功し、核酸の迅速な増幅・検出に利用できることが示されました。

Introduction

ポリメラーゼ連鎖反応(PCR)は、特定のDNA断片を増幅するために使用される分子生物学的手法であり、それによって微量のDNAを数億倍に増幅します。臨床診断、医学研究、食品安全、法医学的識別などの分野で広く使用されています。PCRプロセスは、主に90〜95°Cでの変性、50〜60°Cでのアニーリング、72〜77°Cでの伸長の3つのステップで構成されています。 サーマルサイクリングはPCRプロセスの重要な部分です。しかし、従来のPCRサーマルサイクラーはかさばるだけでなく、非効率的でもあり、25サイクルを完了するのに約40分かかります。これらの制限を克服するために、マイクロ流体チップをベースにした連続フローPCR(CF-PCR)システムが社内で構築されました。CF-PCRは、異なる温度ヒーターに配置されたマイクロチャネルにPCR溶液を駆動することにより、時間を大幅に節約できます1,2,3,4,5。

キャピラリー電気泳動(CE)は、高分解能、高速、優れた再現性6,7,8,9,10,11など、多くの利点があるため、核酸やタンパク質の分析にラボで人気のあるツールとなっています。しかし、ほとんどのラボ、特に発展途上国のラボでは、CE機器の価格が高いため、この技術を購入する余裕がありません。ここでは、CF-PCRマイクロ流体チップの製造方法と、ラボで汎用性の高いCEシステムを構築する方法のプロトコルを概説しました。また、このCF-PCRシステムによる大腸菌の増幅プロセスとCEシステムによるPCR産物の検出についても説明します。このプロトコルに記載されている手順に従うことで、ユーザーはマイクロ流体チップを製造し、PCR溶液を調製し、核酸増幅用のCF-PCRシステムを構築し、限られたリソースでもDNA断片を分離するための簡単なCEシステムをセットアップできるはずです。

Protocol

注:このプロトコルで使用されるすべての材料、試薬、および機器の詳細については、 材料表 を参照してください。 1. CF-PCRマイクロ流体チップの作製 シリコンウェーハを200°Cで25分間加熱し、水分を除去します。 ウェーハの1インチあたり1mLのSU-8-2075フォトレジストを分注します。スピンコーターを使用してシリコンウェーハ上で…

Representative Results

図5は、PCR産物とDNAマーカーのエレクトロフェログラムを表しています。トレース(図 5A)は CF-PCR 増幅産物の CE 結果、トレース(図 5B)はサーマルサイクルで増幅した産物の CE 結果、トレース(図 5C)は 100 bp DNA ラダーの CE 結果です。まず、CF-PCRシステムで大腸菌の標的遺伝子を増幅しました。PCR溶液?…

Discussion

PCRとCEはどちらも、核酸の分析において人気のある2つのバイオテクノロジーです。本稿では、自社で構築したCF-PCRシステムとCEシステムを用いた 大腸菌 の増幅とPCR産物の検出について述べる。 大腸菌 の標的遺伝子は、熱伝達率が高いため、10分以内に増幅することに成功しました。1,500 bp 未満の DNA 断片は 8 分以内に分離されました(図 5)。これら2つの技?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

本研究は、中国上海市科学技術委員会(No.19ZR1477500、No.18441900400)の支援を受けて行われました。上海大学科学技術支援(No.2017KJFZ049)の助成に感謝します。

Materials

100 bp DNA ladder Takara Bio Inc. 3422A
10x Fast Buffer I Takara Bio Inc. RR070A
10x TBE Beijing Solarbio Science & Technology Co., Ltd. T1051
developer solution Alfa Aesar, USA L15459
dNTP mixture (2.5 μM) Takara Bio Inc. RR070A
EC-F Sangon Biotech, Shanghai, China
EC-R Sangon Biotech, Shanghai, China
HEC,1300K Sigma-Aldrich, USA 9004-62-0
isopropanol Aladdin, Shanghai, China 67-63-0
microscope Olympus, Japan BX51
photolithography  SUSS MicroTec, Germany MJB4
photomultiplier tube  Hamamatsu Photonics, Japan R928
photoresist MicroChem, USA SU-8 2075
PID temperature controllers  Shanghai, China XH-W2023
plasma cleaner  Harrick Plasma PDC-32G-2
polyvinyl pyrrolidone (PVP) Aladdin, Shanghai, China P110608
pump Harvard Apparatus PHD2000
silicone tubing  BIO-RAD,USA 7318210
solid-state relays KZLTD, China KS1-25LA
SpeedSTAR HS DNA Polymerase  Takara Bio Inc. RR070A
steel needle zhongxinqiheng,Suzhou,China
SYBR GREEN Equation 1 Solarbio, Beijing, China SY1020
temperature sensors EasyShining Technology, Chengdu, China TCM-M207
Template (E. coli) Takara Bio Inc. AK601
Tween 20 Aladdin, Shanghai, China T104863
voltage power supply  Medina, NY, USA TREK MODEL 610E

References

  1. Li, Z., et al. All-in-one microfluidic device for on-site diagnosis of pathogens based on an integrated continuous flow PCR and electrophoresis biochip. Lab on a Chip. 19 (16), 2663-2668 (2019).
  2. Crews, N., Wittwer, C., Gale, B. Continuous-flow thermal gradient PCR. Biomedical Microdevices. 10 (2), 187-195 (2008).
  3. Li, Z., et al. Design and fabrication of portable continuous flow PCR microfluidic chip for DNA replication. Biomedical Microdevices. 22 (1), 5 (2019).
  4. Kim, J. A., et al. Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip. Biochemical Engineering Journal. 29 (1-2), 91-97 (2006).
  5. Shen, K., Chen, X., Guo, M., Cheng, J. A microchip-based PCR device using flexible printed circuit technology. Sensors and Actuators B: Chemical. 105 (2), 251-258 (2005).
  6. Harstad, R. K., Johnson, A. C., Weisenberger, M. M., Bowser, M. T. Capillary Electrophoresis. Analytical Chemistry. 88 (1), 299-319 (2016).
  7. Redman, E. A., Mellors, J. S., Starkey, J. A., Ramsey, J. M. Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis-mass spectrometry. Analytical Chemistry. 88 (4), 2220-2226 (2016).
  8. Britz-Mckibbin, P., Kranack, A. R., Paprica, A., Chen, D. D. Quantitative assay for epinephrine in dental anesthetic solutions by capillary electrophoresis. Analyst. 123 (7), 1461-1463 (1998).
  9. Maeda, H., et al. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQgene and total bacteria. FEMS Immunology and Medical Microbiology. 39 (1), 81-86 (2003).
  10. Hajba, L., Guttman, A. Recent advances in column coatings for capillary electrophoresis of proteins. TrAC Trends in Analytical Chemistry. 90, 38-44 (2017).
  11. Kleparnik, K. Recent advances in combination of capillary electrophoresis with mass spectrometry: methodology and theory. Electrophoresis. 36 (1), 159-178 (2015).
check_url/fr/63523?article_type=t

Play Video

Citer Cet Article
Dong, W., Tao, C., Yang, B., Miyake, E., Li, Z., Zhang, D., Yamaguchi, Y. Amplification of Escherichia coli in a Continuous-Flow-PCR Microfluidic Chip and Its Detection with a Capillary Electrophoresis System. J. Vis. Exp. (201), e63523, doi:10.3791/63523 (2023).

View Video