Summary

将人类牙齿中的类器官确立为机械研究和再生疗法的有力工具

Published: April 13, 2022
doi:

Summary

我们提出了一种从人类牙齿开始开发上皮类器官培养物的方案。类器官具有强大的可膨胀性,可重现牙齿的上皮干细胞,包括其阿美巴分化能力。独特的类器官模型为研究人类牙齿(干细胞)生物学提供了一种有前途的工具,并为牙齿再生方法提供了前景。

Abstract

牙齿在生活中不仅对食物咀嚼和言语至关重要,而且对心理健康也至关重要。关于人类牙齿发育和生物学的知识很少。特别是,人们对牙齿的上皮干细胞及其功能知之甚少。我们成功地开发了一种从人类牙齿组织(即从拔出的智齿中分离出来的牙齿毛囊)开始的新型类器官模型。类器官具有稳健和长期可扩展性,并在标记表达和功能活性方面概括所提出的人类牙齿上皮干细胞区室。特别是,类器官能够展开在变色过程中 在体内 发生的阿美母细胞分化过程。这种独特的类器官模型将提供一种强大的工具,不仅可以研究人类牙齿发育,还可以研究牙齿病理学,并可能为牙齿再生疗法铺平道路。用基于这种新的类器官模型的生物牙齿替换丢失的牙齿可能是当前合成材料标准植入的一种有吸引力的替代方案。

Introduction

牙齿在食物咀嚼,言语和心理健康(自我形象)中起着至关重要的作用。人牙由不同密度和硬度的高度矿化组织组成1.牙釉质是牙冠的主要成分,是人体内矿化程度最高的组织。在牙釉质形成(amelogenesis)期间,当牙齿发育时,牙齿上皮干细胞(DESCs)分化成牙釉质形成细胞(ameloblasts)。一旦形成,由于在牙齿萌出开始时,阿米伯父细胞凋亡性丧失,珐琅质很少修复或更新1。由创伤或细菌性疾病引起的受损牙釉质组织的修复目前使用合成材料完成;然而,这些都存在重要的缺点,例如微裂,下骨整合和锚固,有限的寿命以及缺乏功能齐全的修复2。因此,具有产生阿米母细胞能力和产生矿化组织潜力的人类DEC的稳健可靠的培养将是牙科再生领域向前迈出的重要一步。

关于人类DESC表型和生物学功能的知识稀缺345。有趣的是,人类牙齿的DESC已被提出存在于Malassez的上皮细胞休息(ERM)中,该细胞簇存在于牙齿卵泡(DF)内,其周围是未脱出的牙齿,并且一旦牙齿萌出,它们仍然存在于根部周围的牙周韧带中1。已经发现与牙髓共培养的ERM细胞分化成阿美母细胞样细胞并产生牙釉质样组织6。然而,由于缺乏可靠的研究模型7,对ERM细胞在牙釉质(再)生成中的特异性作用的深入研究受到限制。目前的ERM体外培养系统受到有限的寿命和标准使用的2D条件下表型快速丧失的阻碍89101112因此,迫切需要一个易于处理的体外系统来忠实地扩展,研究和区分人类DESC。

在过去的十年中,一种 在体外 生长上皮干细胞的强大技术已成功应用于几种类型的(人类)上皮组织,以研究其生物学以及疾病13141516。该技术使组织上皮干细胞能够自我发育成3D细胞结构(即类器官),当接种到细胞外基质(ECM)模拟支架(通常为Matrigel)中并在定义的培养基中培养,复制组织的干细胞位信号传导和/或胚胎发生。类器官发育所需的典型生长因子包括表皮生长因子(EGF)和无翼型MMTV整合位点(WNT)激活剂141516。所得类器官的特征在于模仿组织原始上皮干细胞的持久保真度,以及高可膨胀性,同时保持其表型和功能特性,从而克服了从诊所获得的通常有限的原代人体组织可用性。为了建立类器官,不需要在培养之前从异质组织(即包含其他细胞类型,如间充质细胞)中分离上皮干细胞,因为间充质细胞不附着或在ECM中茁壮成长,最终导致纯上皮类器官1316171819.这种有前途的多功能技术导致了来自各种人体上皮组织的歧管类器官模型的发展。然而,对于深入研究牙齿发育,再生和疾病有价值的人类牙齿衍生类器官尚未建立2021。我们最近成功地开发了这样一种新的类器官模型,从从青少年患者中提取的第三磨牙(智齿)的DF组织开始19

在这里,我们描述了从成人人类牙齿(即从第三磨牙的DF)开发上皮类器官培养物的方案(图1A)。所得类器官表达ERM相关的干性标志物,同时具有长期可扩展性。有趣的是,与大多数其他类器官模型相反,通常需要的EGF对于健壮的类器官发育和生长是多余的。有趣的是,茎性类器官显示出阿美母细胞的分化特性,从而模仿 了体内发生的ERM / DESC特征和过程。这里描述的新的和独特的类器官模型允许探索DESC生物学,可塑性和分化能力,并为迈出牙齿再生方法的第一步打开了大门。

Protocol

此处描述的所有方法均已获得鲁汶伦理委员会研究(13/0104U)的批准。提取的第三磨牙(智齿)是在患者知情同意后获得的。 1. 准备工作 在37°C的1.9%CO 2培养箱中预热48孔培养板15-20 小时。 液化一种基质胶等分试样(生长因子还原;无酚红;进一步称为基底膜基质;BMM)在步骤2.1之前在冰上(4°C)上至少2小时。注意:避免 BMM 的冻融循环。?…

Representative Results

牙齿类器官发育我们提供了一个详细的方案,用于从智齿拔除后获得的人类DF组织中建立类器官培养物(图1A)。分离的DF被酶促和机械解离。获得的细胞在BMM中培养,这些培养基根据经验被定义为最佳的类器官发育和生长(牙齿类器官培养基;汤姆)19. 类器官通常在DF细胞接种后2周内发育(P0; 图 2A…

Discussion

该协议描述了从人类牙齿开始的类器官的高效和可重复的产生。据我们所知,这是从人类牙齿组织开始建立当前概念(上皮)类器官的第一种方法。类器官可长期扩张,并显示牙齿上皮干性表型,与先前在DF7的ERM室中报道的DSC重复。此外,类器官复制了功能性DESC / ERM特征,包括展开阿美巴分化过程72526。…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢UZ Leuven口腔颌面外科(MKA)的所有工作人员以及患者在收集新鲜提取的第三磨牙方面提供的宝贵帮助。我们还要感谢Reinhilde Jacobs博士和Elisabeth Tijskens博士在样本收集方面的帮助。这项工作得到了鲁汶大学(BOF)和FWO-Flanders(G061819N)的资助。L.H.是FWO博士研究员(1S84718N)。

Materials

1.5 mL Microcentrifuge tube Eppendorf 30120.086
15 mL Centrifuge tube Corning 430052
2-Mercaptoethanol Sigma-Aldrich M-6250
48-well flat bottom plates Corning 3548
50 mL Centrifuge tube Corning 430290
A83-01 Sigma-Aldrich SML0788
Agarose Lonza 50004
Albumin Bovine (cell culture grade) Serva 47330.03
AMELX antibody Santa Cruz sc-365284
Amphotericin B Gibco 15200018
B27 (without vitamin A) Gibco 12587-010
Cassette VWR 7202191
Catalase from bovine liver Sigma-Aldrich C100
CD44 antibody Abcam ab34485
Cell strainer, 40 µm Falcon 352340
Cholera Toxin Sigma-Aldrich C8052
Citric acid Sigma-Aldrich C0759
CK14 antibody Thermo Fisher Scientific MA5-11599
Collagenase IV Gibco 17104-019
Cover glass VWR 6310146
Cryobox Thermo Scientific 5100-0001
Cryovial Thermo Fisher Scientific 375353
Dimethylsulfoxide (DMSO) Sigma-Aldrich D2650
Dispase II Sigma-Aldrich D4693
DMEM 1:1 F12 without Fe Invitrogen 074-90715A
DMEM powder high glucose Gibco 52100039
Dnase Sigma-Aldrich D5025-15KU
Donkey serum Sigma-Aldrich D9663 – 10ML
Embedding workstation, 220 to 240 Vac Thermo Fisher Scientific 12587976
Ethanol absolute, ≥99.8% (EtOH) Fisher Chemical E/0650DF/15
Fetal bovine serum (FBS) Sigma-Aldrich F7524
FGF10 Peprotech 100-26
FGF2 (= basic FGF) R&D Systems 234-FSE-025
FGF8 Peprotech AF-100-25
GenElute Mammaliam Total RNA Miniprep Kit Sigma-Aldrich RTN350-1KT Includes 1% β-mercaptoethanol dissolved in lysis buffer
Glass Pasteur pipette Niko Mechanisms 170-40050
Glycine VWR 101194M
HEPES Sigma-Aldrich H4034
IGF-1 PeproTech 100-11
InSolution Y-27632 (ROCK inhibitor, RI) Sigma-Aldrich 688001
Insulin from bovine pancreas Sigma-Aldrich I6634
ITGA6 antibody Sigma-Aldrich HPA012696
L-Glutamine Gibco 25030024
Matrigel (growth factor-reduced; phenol red-free) Corning 15505739
Microscope slide Thermo Fisher Scientific J1800AMNZ
Millex-GV Syringe Filter Unit, 0.22 μm Millipore SLGV033R
Minimum essential medium eagle (αMEM) Sigma-Aldrich M4526
mouse IgG (Alexa 555) secondary antibody Thermo Fisher Scientific A-31570
N2 Gibco 17502-048
N-acetyl L-cysteine Sigma-Aldrich A7250
Nicotinamide Sigma-Aldrich N0636
Noggin PeproTech 120-10C
P63 antibody Abcam ab124762
Pap Pen Sigma-Aldrich Z377821-1EA Marking pen
Paraformaldehyde (PFA), 16% Merck 8.18715
Penicillin G sodium salt Sigma-Aldrich P3032
Penicillin-streptomycin (Pen/Strep) Gibco 15140-122
Petri dish Corning 353002
Phosphate buffered saline (PBS) Gibco 10010-015
Pipette (P20, P200, P1000) Eppendorf or others 2231300006
Plastic transfer pipette (3.5 mL) Sarstedt 86.1171.001
Rabbit IgG (Alexa 488) secondary antibody Thermo Fisher Scientific A21206
RSPO1 PeproTech 120-38
SB202190 (p38i) Biotechne (Tocris) 1264
Scalpel (surgical blade) Swann-Morton 207
SHH R&D Systems 464-SH-200
Silicone molds (Heating block) VWR 720-1918
Sodium Chloride (NaCl) BDH 102415K
Sodium Hydrogen Carbonate (NaHCO3) Merck 106329
Sodium-pyruvate (C3H3NaO3) Sigma-Aldrich P-5280
SOX2 antibody Abcam ab92494
StepOnePlus Thermo Fisher Scientific Real-Time PCR System
Stericup-GP, 0.22 µm Millipore SCGPU02RE
Steriflip-GP Sterile Centrifuge Tube Top Filter Unit, 0.22 μm Millipore SCGP00525
Sterile 1000 μL pipette tips with filter Greiner 740288
Sterile 20 μL pipette tips with filter Greiner 774288
Sterile 200 μL pipette tips with and without filter Greiner 739288
Sterile H2O Fresenius B230531
Streptomycin sulfate salt Sigma-Aldrich S6501
Superscript III first-strand synthesis supermix Invitrogen 11752-050 Reverse transcription kit
Tissue processor Thermo Scientific 12505356
Transferrin Serva 36760.01
Triton X-100 Sigma T8787-50ML
TrypLE express Gibco 12605-010
Vectashield mounting medium+DAPI Labconsult NV H-1200 Antifade mounting medium with DAPI
WNT3a Biotechne (Tocris) 5036-WN-500
Xylenes, 99%, for biochemistry and histology VWR 2,89,75,325

References

  1. Yu, T., Klein, O. D. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development (Cambridge). 147 (2), (2020).
  2. Arrow, P. Dental enamel defects, caries experience and oral health-related quality of life: a cohort study. Australian Dental Journal. 62 (2), 165-172 (2017).
  3. Mitsiadis, T. A., Orsini, G., Jimenez-Rojo, L., Zavan, B., Bressan, E. Dental Stem Cells for Tooth Regeneration. Dental Stem Cells: Regenerative Potential. Stem Cell Biology and Regenerative Potential. Stem Cell Biology and Regenerative Medicine. , (2016).
  4. Mitsiadis, T. A., Orsini, G. Editorial: a new era in dentistry: stem cell-based approaches for tooth and periodontal tissue regeneration. Frontiers in Physiology. 7, 357 (2016).
  5. Miran, S., Mitsiadis, T. A., Pagella, P. Innovative dental stem cell-based research approaches: the future of dentistry. Stem Cells International. 2016, 7231038 (2016).
  6. Shinmura, Y., Tsuchiya, S., Hata, K. I., Honda, M. J. Quiescent epithelial cell rests of malassez can differentiate into ameloblast-like cells. Journal of Cellular Physiology. 217 (3), 728-738 (2008).
  7. Davis, E. M. A review of the epithelial cell rests of Malassez on the bicentennial of their description. Journal of Veterinary Dentistry. 35 (4), 290-298 (2018).
  8. Athanassiou-Papaefthymiou, M., Papagerakis, P., Papagerakis, S. Isolation and characterization of human adult epithelial stem cells from the periodontal ligament. Journal of Dental Research. 94 (11), 1591-1600 (2015).
  9. Kim, G. -. H., et al. Differentiation and establishment of dental epithelial-like stem cells derived from human ESCs and iPSCs. International Journal of Molecular Sciences. 21 (12), 1-16 (2020).
  10. Nam, H., et al. Establishment of Hertwig’s epithelial root sheath/ epithelial rests of malassez cell line from human periodontium. Molecules and Cells. 37 (7), 562-567 (2014).
  11. Nam, H., et al. Expression profile of the stem cell markers in human hertwig’s epithelial root sheath/Epithelial rests of Malassez cells. Molecules and Cells. 31 (4), 355-360 (2011).
  12. Tsunematsu, T., et al. Human odontogenic epithelial cells derived from epithelial rests of Malassez possess stem cell properties. Laboratory Investigation; A Journal of Technical Methods and Pathology. 96 (10), 1063-1075 (2016).
  13. Artegiani, B., Clevers, H. Use and application of 3D-organoid technology. Human Molecular Genetics. 27 (2), 99-107 (2018).
  14. Boretto, M., et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nature Cell Biology. 21 (8), 1041-1051 (2019).
  15. Cox, B., et al. Organoids from pituitary as a novel research model toward pituitary stem cell exploration. Journal of Endocrinology. 240 (2), 287-308 (2019).
  16. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  17. Boretto, M., et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development (Cambridge). 144 (10), 1775-1786 (2017).
  18. Schutgens, F., Clevers, H. Human organoids: tools for understanding biology and treating diseases). Annual Review of Pathology. 15, 211-234 (2020).
  19. Hemeryck, L., et al. Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cellular and Molecular Life Sciences. 79 (3), 153 (2022).
  20. Gao, X., Wu, Y., Liao, L., Tian, W. Oral organoids: progress and challenges. Journal of Dental Research. 100 (5), 454-463 (2021).
  21. Binder, M., et al. Novel strategies for expansion of tooth epithelial stem cells and ameloblast generation. Scientific Reports. 10 (1), 4963 (2020).
  22. Xiong, J., Mrozik, K., Gronthos, S., Bartold, P. M. Epithelial cell rests of malassez contain unique stem cell populations capable of undergoing epithelial-mesenchymal transition. Stem Cells and Development. 21 (11), 2012-2025 (2012).
  23. Luan, X., Ito, Y., Diekwisch, T. G. H. Evolution and development of Hertwig’s epithelial root sheath. Developmental Dynamics. 235 (5), 1167-1180 (2006).
  24. Fukumoto, S., et al. New insights into the functions of enamel matrices in calcified tissues. Japanese Dental Science Review. 50 (2), 47-54 (2014).
  25. Consolaro, A., Consolaro, M. F. M. O. ERM functions, EGF and orthodontic movement or Why doesn’t orthodontic movement cause alveolodental ankylosis. Dental Press Journal of Orthodontics. 15 (2), 24-32 (2010).
  26. Guajardo, G., et al. Immunohistochemical localization of epidermal growth factor in cat paradental tissues during tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics. 118 (2), 210-219 (2000).
  27. Watanabe, K., et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology. 25 (6), 681-686 (2007).
  28. Gonçalves, J., Sasso-Cerri, E., Cerri, P. Cell death and quantitative reduction of rests of Malassez according to age. Journal of Periodontal Research. 43 (4), 478-481 (2008).
  29. Kim, J., Koo, B. -. K., Knoblich, J. A. Human organoids: Model systems for human biology and medicine. Nature Reviews. Molecular Cell Biology. 21 (10), 571-584 (2020).
  30. Razmi, M. T., Narang, T., Handa, S. ADULT (acro-dermato-ungual-lacrimal-tooth) syndrome: a case report from India. Indian Dermatology Online Journal. 9 (3), 194 (2018).
  31. . Future Health Biobank Available from: https://futurehealthbiobank.com/ch-en/ (2022)
  32. Schreurs, R. R. C. E., Baumdick, M. E., Drewniak, A., Bunders, M. J. In vitro co-culture of human intestinal organoids and lamina propria-derived CD4+ T cells. STAR Protocols. 2 (2), 100519 (2021).
  33. Fiorini, E., Veghini, L., Corbo, V. Modeling cell communication in cancer with organoids: Making the complex simple. Frontiers in Cell and Developmental Biology. 8, 166 (2020).
  34. Gjorevski, N., et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 539 (7630), 560-564 (2016).
  35. Zhang, Y., et al. Polyisocyanide hydrogels as a tunable platform for mammary gland organoid formation. Advanced Science. 7 (18), 2001797 (2020).
  36. Mollaki, V. Ethical challenges in organoid use. BioTech. 10 (3), 12 (2021).

Play Video

Citer Cet Article
Hemeryck, L., Lambrichts, I., Bronckaers, A., Vankelecom, H. Establishing Organoids from Human Tooth as a Powerful Tool Toward Mechanistic Research and Regenerative Therapy. J. Vis. Exp. (182), e63671, doi:10.3791/63671 (2022).

View Video