Summary

Etablierung von Zebrafisch-Xenotransplantaten aus Bauchspeicheldrüsenkrebs für Chemosensitivitätstests

Published: May 12, 2023
doi:

Summary

Präklinische Modelle zielen darauf ab, das Wissen über die Krebsbiologie zu erweitern und die Wirksamkeit der Behandlung vorherzusagen. Diese Arbeit beschreibt die Erzeugung von zebrafischbasierten patientenabgeleiteten Xenotransplantaten (zPDXs) mit Tumorgewebefragmenten. Die zPDXs wurden mit einer Chemotherapie behandelt, deren therapeutischer Effekt anhand der Zellapoptose des transplantierten Gewebes beurteilt wurde.

Abstract

Krebs ist weltweit eine der häufigsten Todesursachen, und die Inzidenz vieler Krebsarten nimmt weiter zu. In Bezug auf Screening, Prävention und Behandlung wurden große Fortschritte erzielt. Präklinische Modelle, die das Chemosensitivitätsprofil von Krebspatienten vorhersagen, fehlen jedoch noch. Um diese Lücke zu schließen, wurde ein in vivo patientenabgeleitetes Xenograft-Modell entwickelt und validiert. Das Modell basierte auf Zebrafischembryonen (Danio rerio) 2 Tage nach der Befruchtung, die als Empfänger von Xenotransplantatfragmenten von Tumorgewebe verwendet wurden, die aus einer chirurgischen Probe einer Patientin entnommen wurden.

Es ist auch erwähnenswert, dass bioptische Proben nicht verdaut oder disaggregiert wurden, um die Tumormikroumgebung aufrechtzuerhalten, was für die Analyse des Tumorverhaltens und des Ansprechens auf die Therapie von entscheidender Bedeutung ist. Das Protokoll beschreibt eine Methode zur Herstellung von zebrafischbasierten patientenabgeleiteten Xenotransplantaten (zPDXs) aus der chirurgischen Resektion eines primären soliden Tumors. Nach dem Screening durch einen Anatomopathen wird die Probe mit einer Skalpellklinge präpariert. Nekrotisches Gewebe, Gefäße oder Fettgewebe werden entfernt und dann in 0,3 mm x 0,3 mm x 0,3 mm x 0,3 mm große Stücke geschnitten.

Die Stücke werden dann fluoreszenzmarkiert und in den perivitellinen Raum von Zebrafischembryonen xenotransplantiert. Eine große Anzahl von Embryonen kann kostengünstig verarbeitet werden, was Hochdurchsatz-In-vivo-Analysen der Chemosensitivität von zPDXs gegenüber mehreren Krebsmedikamenten ermöglicht. Konfokale Bilder werden routinemäßig aufgenommen, um die durch die Chemotherapie induzierten apoptotischen Konzentrationen im Vergleich zur Kontrollgruppe zu erkennen und zu quantifizieren. Das Xenotransplantat-Verfahren hat einen erheblichen Zeitvorteil, da es an einem einzigen Tag abgeschlossen werden kann, was ein angemessenes Zeitfenster für die Durchführung eines therapeutischen Screenings für koklinische Studien bietet.

Introduction

Eines der Probleme der klinischen Krebsforschung besteht darin, dass Krebs nicht eine einzelne Krankheit ist, sondern eine Vielzahl verschiedener Krankheiten, die sich im Laufe der Zeit entwickeln können und je nach den Eigenschaften des Tumors selbst und des Patienten spezifische Behandlungen erfordern1. Folglich besteht die Herausforderung darin, sich in Richtung einer patientenorientierten Krebsforschung zu bewegen, um neue personalisierte Strategien für die frühe Vorhersage von Krebsbehandlungsergebnissen zu identifizieren2. Dies ist besonders relevant für das duktale Adenokarzinom der Bauchspeicheldrüse (PDAC), da es mit einer 5-Jahres-Überlebensrate von 11 % als schwer zu behandelnder Krebs gilt3.

Die späte Diagnose, das schnelle Fortschreiten und das Fehlen wirksamer Therapien sind nach wie vor die drängendsten klinischen Probleme der PDAC. Die größte Herausforderung besteht daher darin, den Patienten zu modellieren und Biomarker zu identifizieren, die in der Klinik angewendet werden können, um die wirksamste Therapie im Einklang mit der personalisierten Medizin auszuwählen 4,5,6. Im Laufe der Zeit wurden neue Ansätze zur Modellierung von Krebserkrankungen vorgeschlagen: Patienten-abgeleitete Organoide (PDOs) und von Maus-Patienten abgeleitete Xenotransplantate (mPDXs) stammen aus einer Quelle menschlichen Tumorgewebes. Sie wurden verwendet, um die Krankheit zu reproduzieren, um das Ansprechen und die Resistenz gegen die Therapie sowie das Wiederauftreten der Krankheit zu untersuchen 7,8,9.

In ähnlicher Weise hat das Interesse an zebrafischbasierten patientenabgeleiteten Xenotransplantat-Modellen (zPDX) zugenommen, dank ihrer einzigartigen und vielversprechenden Eigenschaften10, die ein schnelles und kostengünstiges Werkzeug für die Krebsforschung darstellen11,12. zPDX-Modelle benötigen nur eine kleine Tumorstichprobengröße, was ein Hochdurchsatz-Screening der Chemotherapie möglich macht13. Die gebräuchlichste Technik, die für zPDX-Modelle verwendet wird, basiert auf einem vollständigen Probenverdau und der Implantation der primären Zellpopulationen, die den Tumor teilweise reproduziert, aber die Nachteile einer fehlenden Tumormikroumgebung und einer Wechselwirkung zwischen bösartigen und gesunden Zellen hat14.

Diese Arbeit zeigt, wie zPDXs als präklinisches Modell verwendet werden können, um das Chemosensitivitätsprofil von Patienten mit Bauchspeicheldrüsenkrebs zu identifizieren. Die wertvolle Strategie erleichtert den Xenotransplantat-Prozess, da keine Zellexpansion erforderlich ist, was eine Beschleunigung des Chemotherapie-Screenings ermöglicht. Die Stärke des Modells besteht darin, dass alle Komponenten der Mikroumgebung so erhalten bleiben, wie sie im Krebsgewebe des Patienten sind, denn das Verhalten des Tumors hängt bekanntlich von ihrem Zusammenspiel ab15,16. Dies ist gegenüber alternativen Methoden in der Literatur sehr günstig, da es möglich ist, die Tumorheterogenität zu erhalten und patientenspezifisch zur Verbesserung der Vorhersagbarkeit des Behandlungsergebnisses und des Rezidivs beizutragen, so dass das zPDX-Modell in koklinischen Studien eingesetzt werden kann. Dieses Manuskript beschreibt die Schritte, die zur Erstellung des zPDX-Modells erforderlich sind, beginnend mit einer Tumorresektion des Patienten und deren Behandlung, um das Ansprechen auf die Chemotherapie zu analysieren.

Protocol

Das italienische Gesundheitsministerium genehmigte alle beschriebenen Tierversuche in Übereinstimmung mit der Richtlinie 2010/63/EU über die Verwendung und Pflege von Tieren. Die lokale Ethikkommission genehmigte die Studie unter der Registrierungsnummer 70213. Von allen beteiligten Probanden wurde eine informierte Einwilligung eingeholt. Vor dem Start sollten alle Lösungen und die Ausrüstung vorbereitet werden (Abschnitt 1) und die Fische gekreuzt werden (Abschnitt 2). 1. Vorbereitu…

Representative Results

Dieses Protokoll beschreibt den experimentellen Ansatz zur Etablierung von zPDXs aus dem primären humanen Pankreas-Adenokarzinom. Eine Tumorprobe wurde entnommen, zerkleinert und mit Fluoreszenzfarbstoff gefärbt, wie in Protokollabschnitt 4 beschrieben. Die zPDXs wurden dann erfolgreich durch Implantation eines Tumorstücks in den perivitellinen Raum von 2 dpf-Zebrafischembryonen etabliert, wie in Protokollabschnitt 5 beschrieben. Wie in Protokollabschnitt 6 beschrieben, wurden die zPDXs weiter gescreent, um die Chemot…

Discussion

In-vivo-Modelle in der Krebsforschung bieten unschätzbare Werkzeuge, um die Krebsbiologie zu verstehen und das Ansprechen auf die Krebsbehandlung vorherzusagen. Aktuell stehen verschiedene In-vivo-Modelle zur Verfügung, zum Beispiel gentechnisch veränderte Tiere (transgene und Knockout-Mäuse) oder patienteneigene Xenotransplantate aus menschlichen Primärzellen. Trotz vieler optimaler Funktionen hat jede von ihnen verschiedene Einschränkungen. Insbesondere fehlt den oben genannten Modellen eine zuv…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde von der Fondazione Pisa gefördert (Projekt 114/16). Die Autoren danken Raffaele Gaeta von der Abteilung für Histopathologie der Azienda Ospedaliera Pisana für die Auswahl der Patientenproben und die Unterstützung bei der Pathologie. Wir danken auch Alessia Galante für die technische Unterstützung bei den Experimenten. Dieser Artikel basiert auf der Arbeit von COST Action TRANSPAN, CA21116, unterstützt von COST (European Cooperation in Science and Technology).

Materials

5-fluorouracil Teva Pharma AG SMP 1532755
48 multiwell plate Sarstedt 83 3923
96 multiwell plate Sarstedt 82.1581.001
Acetone Merck 179124
Agarose powder  Merck A9539
Amphotericin Thermo Fisher Scientific 15290018
Anti-Nuclei Antibody, clone 235-1 Merck MAB1281  1:200 dilution
Aquarium net QN6 Penn-plax 0-30172-23006-6
BSA Merck A9418
CellTrace Thermo Fisher Scientific C34567
CellTracker CM-DiI  Thermo Fisher Scientific C7001
CellTracker Deep Red  Thermo Fisher Scientific C34565
Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb Cell Signaling Technology 9661S 1:250 dilution
Dimethyl sulfoxide (DMSO)  PanReac AppliChem ITW Reagents A3672,0250
Dumont #5 forceps World Precision Instruments 501985
Folinic acid -  Lederfolin Pfizer
Glass capillaries, 3.5" Drummond Scientific Company 3-000-203-G/X Outer diameter = 1.14 mm. Inner diameter = 0.53 mm. 
Glass vials  VWR International WHEAW224581
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 Thermo Fisher Scientific A-21244   1:500 dilution
Goat serum Thermo Fisher Scientific 31872
Hoechst 33342 Thermo Fisher Scientific H3570
Irinotecan Hospira
Low Temperature Freezer Vials VWR International 479-1220
McIlwain Tissue Chopper World Precision Instruments
Microplate Mixer SCILOGEX 822000049999
Oxaliplatin Teva
Paraformaldehyde Merck P6148-500G
PBS Thermo Fisher Scientific 14190094
Penicillin-streptomycin  Thermo Fisher Scientific 15140122
Petri dish 100 mm Sarstedt 83 3902500
Petri dish 60 mm Sarstedt 83 3901
Plastic Pasteur pipette Sarstedt 86.1171.010
Poly-Mount Tebu-bio 18606-5
Propidium iodide Merck P4170
RPMI-1640 medium Thermo Fisher Scientific 11875093
Scalpel blade No 10 Sterile Stainless Steel VWR International SWAN3001
Scalpel handle #3 World Precision Instruments 500236
Tricaine Merck E10521
Triton X-100  Merck T8787
Tween 20 Merck P9416
Vertical Micropipette Puller Shutter instrument P-30 

References

  1. Rubin, H. Understanding cancer. Science. 219 (4589), 1170-1172 (1983).
  2. Krzyszczyk, P., et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 6 (3-4), 79-100 (2018).
  3. Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. Cancer statistics, 2022. CA Cancer Journal for Clinicians. 72 (1), 7-33 (2022).
  4. Trunk, A., et al. Emerging treatment strategies in pancreatic cancer. Pancreas. 50 (6), 773-787 (2021).
  5. Moffat, G. T., Epstein, A. S., O’Reilly, E. M. Pancreatic cancer-A disease in need: Optimizing and integrating supportive care. Cancer. 125 (22), 3927-3935 (2019).
  6. Sarantis, P., Koustas, E., Papadimitropoulou, A., Papavassiliou, A. G., Karamouzis, M. V. Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World Journal of Gastrointestinal Oncology. 12 (2), 173-181 (2020).
  7. Marshall, L. J., Triunfol, M., Seidle, T. Patient-derived xenograft vs. organoids: a preliminary analysis of cancer research output, funding and human health impact in 2014-2019. Animals. 10 (10), 1923 (2020).
  8. Li, Y., Tang, P., Cai, S., Peng, J., Hua, G. Organoid based personalized medicine: from bench to bedside. Cell Regeneration. 9 (1), 21 (2020).
  9. Jung, J., Seol, H. S., Chang, S. The generation and application of patient-derived xenograft model for cancer research. Cancer Research and Treatment. 50 (1), 1-10 (2018).
  10. Rizzo, G., Bertotti, A., Leto, S. M., Vetrano, S. Patient-derived tumor models: a more suitable tool for pre-clinical studies in colorectal cancer. Journal of Experimental & Clinical Cancer Research. 40 (1), 178 (2021).
  11. Usai, A., et al. Zebrafish patient-derived xenografts identify chemo-response in pancreatic ductal adenocarcinoma patients. Cancers. 13 (16), 4131 (2021).
  12. Usai, A., et al. A model of a zebrafish avatar for co-clinical trials. Cancers. 12 (3), 677 (2020).
  13. Chen, X., Li, Y., Yao, T., Jia, R. Benefits of zebrafish xenograft models in cancer research. Frontiers in Cell and Developmental Biology. 9, 616551 (2021).
  14. Miserocchi, G., et al. Management and potentialities of primary cancer cultures in preclinical and translational studies. Journal of Translational Medicine. 15 (1), 229 (2017).
  15. Baghban, R., et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling. 18 (1), 59 (2020).
  16. Albini, A., et al. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connective Tissue Research. 56 (5), 414-425 (2015).
  17. Avdesh, A., et al. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. Journal of Visualized Experiments. (69), e4196 (2012).
  18. Quail, D. F., Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine. 19 (11), 1423-1437 (2013).
  19. Tavares Barroso, M., et al. Establishment of pancreatobiliary cancer zebrafish avatars for chemotherapy screening. Cells. 10 (8), 2077 (2021).
  20. Kopetz, S., Lemos, R., Powis, G. The promise of patient-derived xenografts: the best laid plans of mice and men. Clinical Cancer Research. 18 (19), 5160-5162 (2012).
  21. Xing, F., Saidou, J., Watabe, K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Frontiers in Bioscience. 15 (1), 166-179 (2010).
  22. Strähle, U., et al. Zebrafish embryos as an alternative to animal experiments-a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology. 33 (2), 128-132 (2012).
  23. Hidalgo, M., et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery. 4 (9), 998-1013 (2014).
check_url/fr/63744?article_type=t

Play Video

Citer Cet Article
Usai, A., Di Franco, G., Gabellini, C., Morelli, L., Raffa, V. Establishment of Zebrafish Patient-Derived Xenografts from Pancreatic Cancer for Chemosensitivity Testing. J. Vis. Exp. (195), e63744, doi:10.3791/63744 (2023).

View Video