Summary

Utilizing the Precision-Cut Lung Slice to Study the Contractile Regulation of Airway and Intrapulmonary Arterial Smooth Muscle

Published: May 05, 2022
doi:

Summary

The present protocol describes preparing and utilizing mouse precision-cut lung slices to assess the airway and intrapulmonary arterial smooth muscle contractility in a nearly in vivo milieu.

Abstract

Smooth muscle cells (SMC) mediate the contraction of the airway and the intrapulmonary artery to modify airflow resistance and pulmonary circulation, respectively, hence playing a critical role in the homeostasis of the pulmonary system. Deregulation of SMC contractility contributes to several pulmonary diseases, including asthma and pulmonary hypertension. However, due to limited tissue access and a lack of culture systems to maintain in vivo SMC phenotypes, molecular mechanisms underlying the deregulated SMC contractility in these diseases remain fully identified. The precision-cut lung slice (PCLS) offers an ex vivo model that circumvents these technical difficulties. As a live, thin lung tissue section, the PCLS retains SMC in natural surroundings and allows in situ tracking of SMC contraction and intracellular Ca2+ signaling that regulates SMC contractility. Here, a detailed mouse PCLS preparation protocol is provided, which preserves intact airways and intrapulmonary arteries. This protocol involves two essential steps before subjecting the lung lobe to slicing: inflating the airway with low-melting-point agarose through the trachea and infilling pulmonary vessels with gelatin through the right ventricle. The PCLS prepared using this protocol can be used for bioassays to evaluate Ca2+-mediated contractile regulation of SMC in both the airway and the intrapulmonary arterial compartments. When applied to mouse models of respiratory diseases, this protocol enables the functional investigation of SMC, thereby providing insight into the underlying mechanism of SMC contractility deregulation in diseases.

Introduction

Smooth muscle cell (SMC) is a major structural cell type in the lung, primarily residing in the media wall of airways and pulmonary vessels. SMCs contract to alter the luminal caliber, thus regulating air and blood flow1,2. Therefore, contractile regulation of SMCs is essential to maintain the homeostasis of air ventilation and pulmonary circulation. In contrast, aberrant SMC contractility provokes obstructive airway or pulmonary vascular diseases like asthma and pulmonary arterial hypertension. However, the functional assessment of lung SMCs has been challenged by limited access to the lung tissue, especially those small airways and microvessels in the distal part of the lung2,3. Current solutions resort to indirect assays, such as measuring airflow resistance by Flexivent to reflect airway constriction, and checking pulmonary arterial blood pressure by right heart catheterization to assess pulmonary vasocontraction4,5. However, these indirect assays have multiple disadvantages, such as being confounded by structural factors, failing to capture the spatial diversity of airway or vascular responses in the whole lung scale6,7, and unfitting for the mechanistic study of contractile regulation at the cellular level. Therefore, alternative approaches using isolated primary cells, trachea/bronchi muscle strips8,9, or large vascular segments10 have been applied for the SMC study in vitro. Nevertheless, these methods also have limitations. For example, a quick phenotypical adaptation of primary SMCs in the culture condition11,12 makes it problematic to extrapolate findings from cell culture to in vivo settings. In addition, the contractile phenotype of SMCs in the isolated proximal airway or vascular segments may not represent the SMCs in the distal lung6,7. Moreover, the muscle force measurement at the tissue level remains dissociated from molecular and cellular events that are essential for mechanistic insight into contractile regulation.

Precision-cut lung slice (PCLS), a live lung tissue section, provides an ideal ex vivo tool to characterize pulmonary SMCs in a near in vivo microenvironment (i.e., preserved multi-cellular architecture and interaction)13. Since Drs. Placke and Fisher first introduced the preparation of lung slices from agarose-inflated rat and hamster lungs in the 1980s14,15, this technique has been advanced continuously to provide PCLSs with higher quality and greater versatility for biomedical research. One significant improvement is the enhancement of pulmonary arterial preservation by gelatin infusion in addition to lung inflation with agarose via the trachea. As a result, both the airway and pulmonary arteries are kept intact in the PCLS for ex vivo assessement16. Furthermore, the PCLS is viable for a prolonged time in culture. For instance, mouse PCLSs had no significant change in cell viability and metabolism for a minimum of 12 days in culture, as well as, they retained airway contractility for up to 7 days17. In addition, PCLS keeps different-sized airways or vessels for contraction and relaxation assays. Moreover, intracellular Ca2+ signaling of SMCs, the determinant factor of cell contractility, can be assayed with Ca2+ reporter dyes imaged by a confocal or 2-photon microscope13.

Considering the extensive application of the mouse model in lung research, a detailed protocol is described here for preparing mouse PCLS with intact airways and intrapulmonary arteries for ex vivo lung research. Using the prepared PCLSs, we subsequently demonstrated how to evaluate the airway and pulmonary arterial responses to constrictive or relaxant stimuli. In addition, the method of loading the PCLS with Ca2+ reporter dye and then imaging Ca2+ signaling of SMCs associated with contractile or relaxant responses are also described.

Protocol

All animal care was in accordance with the guidelines of the Institutional Animal Care and Use Committee of Massachusetts General Hospital. Wild-type C57/B6 male mice, 8 weeks of age, were used for the present study. 1. Experimental preparation Prepare the working solution. Prepare 1x Hank's Balanced Salt Solution (HBSS, with Ca2+ and Mg2+, and pH balanced with 20 mM HEPES, see Table of Materials). Use the HBSS…

Representative Results

Mouse PCLS preparation preserving intact intrapulmonary airways and arteries A 150 µm thick PCLS was observed under the inverted phase-contrast microscope. In mouse lungs, conductive airways are accompanied by intrapulmonary arteries, running from the hilus to the peripheral lung. A representative pulmonary airway-artery bundle in a mouse PCLS is shown in Figure 2B. The airway can be easily identified by cuboidal epithelial cells with active cilial beating lining …

Discussion

The preparation of PCLS involves several critical steps. First, it is essential to inflate the lung lobe homogeneously to avoid the variation of tissue stiffness from uneven agarose distribution. As the liquid agarose rapidly gels in thin catheters or airways at a temperature below 37 °C, the resultant filling defect in the distal lung field could increase the disparity of lung tissue stiffness and cause tissue tearing during the vibratome section. Therefore, keeping the low-melting agarose solution at 42 °C in…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work is supported by NIH grants, K08135443 (Y.B), 1R01HL132991 (X.A).

Materials

1 mL syringe BD 309626
15 mL sterile centrifuge tubes Celltreat 229411
3 mL syringe BD 309585
50 mL sterile centrifuge tubes Celltreat 229422
Acetyl-beta-methacholine Millipore Sigma 62-51-1
Antibiotic-anitmycotic Thermo Fisher 15240-062
CCD-camera Nikon Nikon Ds-Ri2 camera
Cover glassess Fisher Scientific 12-548-5CP; 12-548-5PP
Cryogenic vials Fisher Scientific 430488
Custom-built laser scanning confocal microscope Details in Reference 18
DMEM/F12 Fisher Scientific MT-10-092-CM
Endothelin 1 Millipore Sigma E7764
Fine dissecting scissor Fisher Scientific NC9702861
Freezing container Sigma-Aldrich C1562
Gelatin from porcine skin Sigma-Aldrich 9000-70-8
Hanks' Balanced Salt Solution (HBSS) Thermo Fisher 14025092
Hemostatic forcep Fisher Scientific 16-100-117
HEPES Thermo Fisher 15630080
High vaccum silicone grease Fisher Scientific 146355d
Isopropyl alcohol Sigma-Aldrich W292907-1KG-K
Metal washers Home Depot Product Authority 800442 Everbilt Flat Washers #10
Micro-dissecting forcep Sigma-Aldrich F4142
Needle scalp vein set (25 G) EXELINT 26708
NOC-5 Cayman Chemical 16534
Nylon mesh Component Supply U-CMN-300
Oregon green 488 BAPTA-1 AM Life Technologies o-6807
Phase-contrast microscope Nikon Nikon Eclipse TS 100
Pluronic F-127 Thermo Fisher P-6867
Razor blades Personna Personna Double Edge Razor Blades in White Wrapper 100 count
Sulfobromophthalein Sigma-Aldrich S0252
Superglue Krazy Glue Krazy Glue, All purpose
Ultrapure low melting point agarose Thermo Fisher 16520050
Vibratome Precisionary VF 310-0Z
Vibratome chilling block Precisionary SKU-VM-CB12.5-NC
Vibratome specimen tube Precisionary SKU VF-SPS-VM-12.5-NC
Y shaped IV catheter BD 383336 BD Saf-T-Intima closed IV catheter

References

  1. Prakash, Y. S. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. American Journal of Physiology Lung Cellular and Molecular Physiology. 311 (6), 1113-1140 (2016).
  2. Lechartier, B., et al. Phenotypic diversity of vascular smooth muscle cells in pulmonary arterial hypertension: implications for therapy. Chest. 161 (1), 219-231 (2022).
  3. Doeing, D. C., Solway, J. Airway smooth muscle in the pathophysiology and treatment of asthma. Journal of Applied Physiology. 114 (7), 834-843 (2013).
  4. McGovern, T. K., et al. Evaluation of respiratory system mechanics in mice using the forced oscillation technique. Journal of Visualized Experiments: JoVE. (75), e50172 (2013).
  5. Bikou, O., et al. Induction and characterization of pulmonary hypertension in mice using the hypoxia/SU5416 model. Journal of Visualized Experiments: JoVE. (160), e59252 (2020).
  6. Stenmark, K. R., et al. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovascular Research. 114 (4), 551-564 (2018).
  7. Bai, Y., Zhang, M., Sanderson, M. J. Contractility and Ca2+ signaling of smooth muscle cells in different generations of mouse airways. American Journal of Respiratory Cell and Molecular Biology. 36 (1), 122-130 (2007).
  8. Chin, L. Y., et al. Human airway smooth muscle is structurally and mechanically similar to that of other species. The European Respiratory Journal. 36 (1), 170-177 (2010).
  9. Wang, P., et al. Inflammatory mediators mediate airway smooth muscle contraction through a G protein-coupled receptor-transmembrane protein 16A-voltage-dependent Ca(2+) channel axis and contribute to bronchial hyperresponsiveness in asthma. The Journal of Allergy and Clinical Immunology. 141 (4), 1259-1268 (2018).
  10. Currigan, D. A., et al. Vasoconstrictor responses to vasopressor agents in human pulmonary and radial arteries: an in vitro study. Anesthesiology. 121 (5), 930-936 (2014).
  11. Halayko, A. J., et al. Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes. The American Journal of Physiology. 276 (1), 197-206 (1999).
  12. Worth, N. F., et al. Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins. Cell Motility and the Cytoskeleton. 49 (3), 130-145 (2001).
  13. Sanderson, M. J. Exploring lung physiology in health and disease with lung slices. Pulmonary Pharmacology and Therapeutics. 24 (5), 452-465 (2011).
  14. Placke, M. E., Fisher, G. L. Adult peripheral lung organ culture-a model for respiratory tract toxicology. Toxicology and Applied Pharmacology. 90 (2), 284-298 (1987).
  15. Fisher, G. L., Placke, M. E. In vitro models of lung toxicity. Toxicology. 47 (1-2), 71-93 (1987).
  16. Perez, J. F., Sanderson, M. J. The contraction of smooth muscle cells of intrapulmonary arterioles is determined by the frequency of Ca2+ oscillations induced by 5-HT and KCl. The Journal of General Physiology. 125 (6), 555-567 (2005).
  17. Li, G., et al. Preserving airway smooth muscle contraction in precision-cut lung slices. Scientific Reports. 10 (1), 6480 (2020).
  18. Sanderson, M. J., Parker, I. Video-rate confocal microscopy. Methods in Enzymology. 360, 447-481 (2003).
  19. Kolbe, U., et al. Early cytokine induction upon pseudomonas aeruginosa infection in murine precision cut lung slices depends on sensing of bacterial viability. Frontiers in Immunology. 11, 598636 (2020).
  20. Perez, J. F., Sanderson, M. J. The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. The Journal of General Physiology. 125 (6), 535-553 (2005).
  21. Rosner, S. R., et al. Airway contractility in the precision-cut lung slice after cryopreservation. American Journal of Respiratory Cell and Molecular Biology. 50 (5), 876-881 (2014).
  22. Bai, Y., Sanderson, M. J. Modulation of the Ca2+ sensitivity of airway smooth muscle cells in murine lung slices. American Journal of Physiology-Lung Cellular and Molecular Physiology. 291 (2), 208-221 (2006).
  23. Sanderson, M. J., et al. Fluorescence microscopy. Cold Spring Harbor Protocols. 10, 071795 (2014).
  24. Sanderson, M. J., Bai, Y., Perez-Zoghbi, J. Ca(2+) oscillations regulate contraction of intrapulmonary smooth muscle cells. Advances in Experimental Medicine and Biology. 661, 77-96 (2010).
  25. Perez-Zoghbi, J. F., Bai, Y., Sanderson, M. J. Nitric oxide induces airway smooth muscle cell relaxation by decreasing the frequency of agonist-induced Ca2+ oscillations. The Journal of General Physiology. 135 (3), 247-259 (2010).
  26. Lam, M., Lamanna, E., Bourke, J. E. Regulation of airway smooth muscle contraction in health and disease. Advances in Experimental Medicine and Biology. 1124, 381-422 (2019).
  27. Patel, K. R., et al. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 31 (10), 4335-4346 (2017).
  28. Aven, L., et al. An NT4/TrkB-dependent increase in innervation links early-life allergen exposure to persistent airway hyperreactivity. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 28 (2), 897-907 (2014).
  29. Liu, G., et al. Use of precision cut lung slices as a translational model for the study of lung biology. Respiratory Research. 20 (1), 162 (2019).
  30. Wu, X., et al. Mouse lung tissue slice culture. Methods in Molecular Biology. 1940, 297-311 (2019).
  31. Bai, Y., et al. CD38 plays an age-related role in cholinergic deregulation of airway smooth muscle contractility. The Journal of Allergy and Clinical Immunology. 6749 (21), 01760-01767 (2021).
  32. Khan, M. M., et al. An integrated multiomic and quantitative label-free microscopy-based approach to study pro-fibrotic signalling in ex vivo human precision-cut lung slices. The European Respiratory Journal. 58 (1), (2021).
  33. Kennedy, J. L., et al. Effects of rhinovirus 39 infection on airway hyperresponsiveness to carbachol in human airways precision cut lung slices. The Journal of Allergy and Clinical Immunology. 141 (5), 1887-1890 (2018).
  34. Bai, Y., et al. Cryopreserved Human precision-cut lung slices as a bioassay for live tissue banking. a viability study of bronchodilation with bitter-taste receptor agonists. American Journal of Respiratory Cell and Molecular Biology. 54 (5), 656-663 (2016).
  35. Mondoñedo, J. R., et al. A high-throughput system for cyclic stretching of precision-cut lung slices during acute cigarette smoke extract exposure. Frontiers in Physiology. 11, 566 (2020).
  36. Davidovich, N., Huang, J., Margulies, S. S. Reproducible uniform equibiaxial stretch of precision-cut lung slices. American Journal of Physiology-Lung Cellular and Molecular Physiology. 304 (4), 210-220 (2013).
  37. Ram-Mohan, S., et al. Tissue traction microscopy to quantify muscle contraction within precision-cut lung slices. American Journal of Physiology-Lung Cellular and Molecular Physiology. 318 (2), 323-330 (2020).
check_url/fr/63932?article_type=t

Play Video

Citer Cet Article
Bai, Y., Ai, X. Utilizing the Precision-Cut Lung Slice to Study the Contractile Regulation of Airway and Intrapulmonary Arterial Smooth Muscle. J. Vis. Exp. (183), e63932, doi:10.3791/63932 (2022).

View Video