Summary

氧合敏感性心脏 MRI 联合血管主动呼吸操作用于冠状动脉微血管功能障碍的无创评估

Published: August 17, 2022
doi:

Summary

通过氧合敏感性心脏磁共振成像结合血管主动呼吸动作评估微血管功能的独特之处在于其评估 体内 心肌氧合的快速动态变化的能力,因此可以作为冠状动脉血管功能至关重要的诊断技术。

Abstract

氧合敏感心脏磁共振成像 (OS-CMR) 是一种诊断技术,它利用脱氧血红蛋白固有的顺磁特性作为组织造影剂的内源性来源。OS-CMR 与标准化的血管主动呼吸操作(过度通气和呼吸暂停)结合使用,作为一种有效的非药物血管舒缩刺激,可以监测心肌氧合的变化。量化心动周期和整个血管活性操作期间的这种变化可以为冠状动脉大血管和微血管功能提供标志物,从而避免对任何外源性、静脉注射造影剂或药物应激剂的需求。

OS-CMR 使用众所周知的 T2* 加权图像对血氧的敏感性。使用改进的标准临床稳态自由进动 (SSFP) 电影序列,可以在任何心脏 MRI 扫描仪上采集氧合敏感图像,使该技术与供应商无关且易于实施。作为血管主动呼吸动作,我们采用 4 分钟的呼吸方案,即 120 秒的自由呼吸、60 秒的节奏过度通气,然后是至少 30 秒的呼气屏气。可以通过跟踪信号强度变化来评估心肌组织氧合对该动作的区域和整体反应。在健康人群和各种病理学中研究了过度通气后屏气后最初 30 秒的变化,称为呼吸诱导的心肌氧合储备 (B-MORE)。提供了通过血管活性操作进行氧敏感CMR扫描的详细方案。

正如在尚不完全了解的微血管功能障碍患者中所证明的那样,例如无阻塞性冠状动脉狭窄的诱发性缺血 (INOCA)、射血分数保留的心力衰竭 (HFpEF) 或心脏移植后的微血管功能障碍,这种方法提供了关于冠状动脉血管功能的独特、临床重要和补充信息。

Introduction

氧合敏感心脏磁共振成像 (OS-CMR) 利用脱氧血红蛋白固有的顺磁特性作为 MR 造影剂的内源性来源 1,2,3OS-CMR 与标准化的血管主动呼吸操作(过度通气和呼吸暂停)结合使用,作为一种有效的非药物血管舒缩刺激,可以监测心肌氧合的变化,作为血管功能的标志物,从而避免对任何外源性、静脉内造影剂或药物应激剂的需求 4,5,6

呼吸操作,包括屏气和过度通气,是改变血管运动的高效血管活性措施,并且由于其安全性和简单性,是控制内皮依赖性血管运动的理想选择,作为诊断程序的一部分。研究表明,当过度通气与随后的屏气相结合时,效果会更高4,7,因为在这样的方案中血管收缩(通过相关的血液二氧化碳减少)之后是血管舒张(血液二氧化碳增加);因此,健康的血管系统在从血管收缩到血管舒张的整个范围内过渡,心肌血流量强烈增加,这反过来又增加了心肌氧合,从而增加了OS-CMR图像中可观察到的信号强度。与腺苷输注相比,使用电影图像进行采集还可以获得具有更好信噪比的心脏相位分辨结果8

呼吸操作可以代替药物应激剂来诱导血管活性变化,可用于评估冠状动脉血管功能。这不仅降低了患者风险、后勤工作和相关成本,还有助于提供更有意义的临床结果。药物应激剂(如腺苷)会触发内皮依赖性反应,从而反映内皮功能本身。到目前为止,这种对内皮功能的特异性评估只能通过冠状动脉内给予乙酰胆碱作为内皮依赖性血管扩张剂来实现。然而,这种手术是高度侵入性的 2,9,因此很少进行。

由于无法获得直接的生物标志物,一些诊断技术使用了替代标志物,例如组织对外源性造影剂的摄取。它们受到以下因素的限制:需要一根或两条静脉通路管路、禁忌症(如严重肾脏疾病或房室传导阻滞)以及需要接受过管理潜在严重副作用培训的工作人员在场10,11。然而,目前冠状动脉功能成像的最显着局限性仍然是心肌灌注作为替代标志物,并不能反映心肌组织氧合是血管功能障碍最重要的下游后果2

OS-CMR 与血管主动呼吸操作已被用于评估多种情况下的血管功能,包括健康个体、冠状动脉疾病 (CAD) 患者的大血管疾病,以及阻塞性睡眠呼吸暂停 (OSA) 患者的微血管功能障碍、心脏移植后无阻塞性冠状动脉狭窄缺血 (INOCA) 和射血分数保留型心力衰竭 (HFpEF)47、12、13、141516在 CAD 人群中,源自 OS-CMR 的呼吸诱导心肌氧合储备 (B-MORE) 方案被证明是安全、可行且敏感的,可识别冠状动脉灌注的心肌区域的氧合反应受损,具有显着狭窄13

在微血管功能障碍中,OS-CMR 在阻塞性睡眠呼吸暂停患者中显示出延迟的心肌氧合反应,并且在 HFpEF 患者和心脏移植后发现 B-MORE 减弱12,14,16。在患有 INOCA 的女性中,呼吸动作导致异常异质的心肌氧合反应,突出了 OS-CMR15 高空间分辨率的优势。本文综述了通过血管主动呼吸动作进行 OS-CMR 的基本原理和方法,并讨论了其在评估微血管功能障碍患者群体血管病理生理学方面的临床效用,特别是与内皮功能障碍相关的疾病。

呼吸增强氧合敏感性 MRI 的生理背景
在正常生理条件下,氧需求的增加与血流量增加的氧气供应等效增加相匹配,导致局部脱氧血红蛋白浓度没有变化。相反,诱导的血管舒张导致含氧血液“过量”流入,而需氧量没有变化。因此,更多的组织血红蛋白被氧合,因此脱氧血红蛋白较少,导致OS-CMR信号强度相对增加4,17。如果血管功能受损,它就无法对改变的代谢需求或刺激做出适当的反应,以增加心肌血流量。

在诱发血管运动的刺激下,例如引起血管收缩的有节奏的过度通气或引起二氧化碳介导的血管舒张的长时间屏气,血管舒缩活动受损将导致局部脱氧血红蛋白浓度与其他区域相比相对增加,随后,OS-CMR 信号强度的变化减少。在诱发性缺血的情况下,即使没有心外膜冠状动脉狭窄,血管功能受损也会导致局部需求增加,而局部心肌血流量增加无法满足。在OS-CMR图像中,脱氧血红蛋白浓度的局部净增加导致局部信号强度降低2,18,19,20。

在冠状动脉微血管功能障碍患者中,内皮依赖性和非依赖性血管扩张剂(包括腺苷)的血管平滑肌松弛减弱 21,22,23,24,25,26,27.内皮非依赖性功能障碍被认为是由于微血管肥大或周围心肌病变引起的结构异常所致。相反,内皮功能障碍导致血管收缩不足和血管舒张受损(内皮依赖性),通常是由血管壁中一氧化氮生物活性的丧失引起的21,28。内皮功能障碍与许多心血管疾病的发病机制有关,包括高胆固醇血症、高血压、糖尿病、冠心病、阻塞性睡眠呼吸暂停、INOCA 和 HF23242829303132事实上,内皮功能障碍是冠状动脉粥样硬化的最早表现33。内皮功能成像具有非常强的潜力,因为它是不良心血管事件和长期结果的重要预测因子,对心血管疾病状态具有深远的预后影响23,29,30,31,34,35。

与灌注成像相比,呼吸诱导的心肌氧合储备 (B-MORE) 定义为过度通气后屏气期间心肌氧合的相对增加,可以可视化这种血管活性触发因素对整体或区域氧合本身的影响 2,36。因此,作为血管功能的准确下游标志物,B-MORE不仅可以识别血管功能障碍,还可以识别实际的诱导性缺血,表明存在更严重的局部灌注或氧合问题18,19,37。这是通过OS-CMR可视化脱氧血红蛋白相对减少的能力来实现的,脱氧血红蛋白在心肌的毛细血管系统中很丰富,而心肌毛细血管系统本身就占心肌组织的很大一部分24

OS-CMR 序列
用于 OS-CMR 成像的磁共振成像 (MRI) 序列是在两个短轴切片中采集的前瞻性门控、修正、平衡、稳态、自由进动 (bSSFP) 序列。该 bSSFP 序列是所有执行心脏 MRI 的 MRI 扫描仪上可用(且可修改)的标准临床序列,使该技术与供应商无关且易于实施。在常规的bSSFP电影序列中,回波时间、重复时间和翻转角度被修改,以使产生的信号强度对BOLD效应敏感,从而创建一个氧合敏感序列。与之前用于 BOLD 成像的梯度回波技术相比,这种方法是 T2 制备的 bSSFP 读数,先前已被证明适用于采集具有更高信噪比、更高图像质量和更快扫描时间的氧敏感图像38。使用这种方法进行呼吸增强的OS-CMR可以应用,副作用很小,很轻微(表1)。值得注意的是,超过 90% 的参与者以足够长的屏气时间完成该协议4121316

Protocol

所有利用 OS-CMR 和血管主动呼吸动作的 MRI 扫描都应按照当地机构指南进行。下面概述的协议已用于几个机构人类研究伦理委员会批准的研究。对于本协议和手稿中描述的所有人类参与者数据和结果,均已获得书面同意。 1. 广泛的概述 根据感兴趣的研究人群改变纳入和排除标准。对于具有血管主动呼吸操作方案的 OS-CMR,使用以下一般的常见排除标准:一?…

Representative Results

解读 B-MORE在先前发表的利用 OS-CMR 和血管主动呼吸动作的研究中,通过将屏气的第一个收缩末期图像与最接近屏气 15 秒、30 秒、45 秒等的收缩末期图像进行比较来计算整体或区域 B-MORE。选择心动周期的收缩末期有几个原因。收缩末期图像是读者之间和读者之间识别的最一致的阶段:它包含心肌中最多的像素数,它通常发生在与参与者心率无关的大致相同的触发时间,并且它始终?…

Discussion

在已经建立的研究或临床 MRI 方案中增加具有标准化血管活性呼吸操作的 OS-CMR 采集,对整体扫描的时间几乎没有增加。通过这个简短的添加,可以获得有关潜在大血管和微血管功能的信息(图2)。内皮功能障碍的一个重要后果是脉管系统无法对生理刺激做出反应,正如最初通过心脏中异常血流介导的松弛所证明的那样43.OS-CMR 具有内皮依赖性血管主动呼吸?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这篇论文和方法综述是由麦吉尔大学健康中心Courtois CMR研究小组的整个团队完成的。特别感谢我们的 MRI 技师 Maggie Leo 和 Sylvie Gelineau 对参与者的扫描和对本文的反馈。

Materials

balanced SSFP MRI sequence Any To modify to create the OS-CMR sequence
DICOM/ Imaging Viewer Any Best if the viewer has the ability for quantitative measurements (i.e., Area19 prototype software)
Magnetic Resonance Imaging scanner Any 3 Tesla or 1.5 Tesla
Metronome Any Set to 30 breaths per minute. To use if manually communicating breathing maneuver instructions to participants.
Speaker system Any To communicate breathing maneuver instrucitons to participants through
Stopwatch Any To use if manually communicating breathing maneuver instructions to participants

References

  1. Ogawa, S., Lee, T. M., Kay, A. R., Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America. 87 (24), 9868-9872 (1990).
  2. Friedrich, M. G., Karamitsos, T. D. Oxygenation-sensitive cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance. 15, 43 (2013).
  3. Guensch, D. P., et al. The blood oxygen level dependent (BOLD) effect of in-vitro myoglobin and hemoglobin. Scientific Reports. 11 (1), 11464 (2021).
  4. Guensch, D. P., et al. Breathing manoeuvre-dependent changes in myocardial oxygenation in healthy humans. European Heart Journal – Cardiovascular Imaging. 15 (4), 409-414 (2014).
  5. Fischer, K., Guensch, D. P., Shie, N., Lebel, J., Friedrich, M. G. Breathing maneuvers as a vasoactive stimulus for detecting inducible myocardial ischemia – An experimental cardiovascular magnetic resonance study. PloS One. 11 (10), 0164524 (2016).
  6. Friedrich, M. G. Tracking myocardial oxygenation over a breath hold with blood oxygen level−dependent MRI: A radically different approach to study ischemia. Radiology. 294 (3), 546-547 (2020).
  7. Teixeira, T., Nadeshalingam, G., Fischer, K., Marcotte, F., Friedrich, M. G. Breathing maneuvers as a coronary vasodilator for myocardial perfusion imaging. Journal of Magnetic Resonance Imaging. 44 (4), 947-955 (2016).
  8. Fischer, K., Guensch, D. P., Friedrich, M. G. Response of myocardial oxygenation to breathing manoeuvres and adenosine infusion. European Heart Journal Cardiovascular Imaging. 16 (4), 395-401 (2015).
  9. Ong, P., Athanasiadis, A., Sechtem, U. Intracoronary acetylcholine provocation testing for assessment of coronary vasomotor disorders. Journal of Visualized Experiments. (114), e54295 (2016).
  10. Voigtländer, T., et al. The adverse events and hemodynamic effects of adenosine-based cardiac MRI. Korean Journal of Radiology. 12 (4), 424-430 (2011).
  11. Tsang, K. H., Chan, W. S. W., Shiu, C. K., Chan, M. K. The safety and tolerability of adenosine as a pharmacological stressor in stress perfusion cardiac magnetic resonance imaging in the Chinese population. Hong Kong Medical Journal. 21 (6), 524-527 (2015).
  12. Roubille, F., Fischer, K., Guensch, D. P., Tardif, J. -. C., Friedrich, M. G. Impact of hyperventilation and apnea on myocardial oxygenation in patients with obstructive sleep apnea – An oxygenation-sensitive CMR study. Journal of Cardiology. 69 (2), 489-494 (2017).
  13. Fischer, K., et al. Feasibility of cardiovascular magnetic resonance to detect oxygenation deficits in patients with multi-vessel coronary artery disease triggered by breathing maneuvers. Journal of Cardiovascular Magnetic Resonance. 20 (1), 31 (2018).
  14. Iannino, N., et al. Myocardial vascular function assessed by dynamic oxygenation-sensitive cardiac magnetic resonance imaging long-term following cardiac transplantation. Transplantation. 105 (6), 1347-1355 (2021).
  15. Elharram, M., et al. Regional heterogeneity in the coronary vascular response in women with chest pain and nonobstructive coronary artery disease. Circulation. 143 (7), 764-766 (2021).
  16. Fischer, K., et al. Insights into myocardial oxygenation and cardiovascular magnetic resonance tissue biomarkers in heart failure with preserved ejection fraction. Circulation: Heart Failure. 15 (4), 008903 (2022).
  17. Li, D., Dhawale, P., Rubin, P. J., Haacke, E. M., Gropler, R. J. Myocardial signal response to dipyridamole and dobutamine: demonstration of the BOLD effect using a double-echo gradient-echo sequence. Magnetic Resonance in Medicine. 36 (1), 16-20 (1996).
  18. Arnold, J. R., et al. Myocardial oxygenation in coronary artery disease: insights from blood oxygen level-dependent magnetic resonance imaging at 3 tesla. Journal of the American College of Cardiology. 59 (22), 1954-1964 (2012).
  19. Karamitsos, T. D., et al. Relationship between regional myocardial oxygenation and perfusion in patients with coronary artery disease: Insights from cardiovascular magnetic resonance and positron emission tomography. Circulation: Cardiovascular Imaging. 3 (1), 32-40 (2010).
  20. Friedrich, M. G., Niendorf, T., Schulz-Menger, J., Gross, C. M., Dietz, R. Blood oxygen level-dependent magnetic resonance imaging in patients with stress-induced angina. Circulation. 108 (18), 2219-2223 (2003).
  21. Cai, H., Harrison, D. G. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circulation Research. 87 (10), 840-844 (2000).
  22. Kothawade, K., Bairey Merz, C. N. Microvascular coronary dysfunction in women: Pathophysiology, diagnosis, and management. Current Problems in Cardiology. 36 (8), 291-318 (2011).
  23. Gimbrone, M. A., García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research. 118 (4), 620-636 (2016).
  24. Vancheri, F., Longo, G., Vancheri, S., Henein, M. Coronary microvascular dysfunction. Journal of Clinical Medicine. 9 (9), 2880 (2020).
  25. Camici, P. G., Crea, F. Coronary microvascular dysfunction. The New England Journal of Medicine. 356 (8), 830-840 (2007).
  26. Ford, T. J., et al. Assessment of vascular dysfunction in patients without obstructive coronary artery disease: Why, how, and when. JACC: Cardiovascular Interventions. 13 (16), 1847-1864 (2020).
  27. Taqueti, V. R., Di Carli, M. F. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. Journal of the American College of Cardiology. 72 (21), 2625-2641 (2018).
  28. Budhiraja, R., Parthasarathy, S., Quan, S. F. Endothelial dysfunction in obstructive sleep apnea. Journal of Clinical Sleep Medicine. 3 (4), 409-415 (2007).
  29. Sena, C. M., Pereira, A. M., Seiça, R. Endothelial dysfunction – A major mediator of diabetic vascular disease. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 1832 (12), 2216-2231 (2013).
  30. Vanhoutte, P. M., Shimokawa, H., Feletou, M., Tang, E. H. C. Endothelial dysfunction and vascular disease – A 30th anniversary update. Acta Physiologica. 219 (1), 22-96 (2017).
  31. Juni, R. P., Duckers, H. J., Vanhoutte, P. M., Virmani, R., Moens, A. L. Oxidative stress and pathological changes after coronary artery interventions. Journal of the American College of Cardiology. 61 (14), 1471-1481 (2013).
  32. Simsek, E. C., et al. Endothelial dysfunction in patients with myocardial ischemia or infarction and nonobstructive coronary arteries. Journal of Clinical Ultrasound. 49 (4), 334-340 (2021).
  33. Stillman, A. E., et al. Imaging the myocardial ischemic cascade. The International Journal of Cardiovascular Imaging. 34 (8), 1249-1263 (2018).
  34. Fischer, D., et al. Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation, or death. European Heart Journal. 26 (1), 65-69 (2005).
  35. Hurst, T., Olson, T. H., Olson, L. E., Appleton, C. P. Cardiac syndrome X and endothelial dysfunction: New concepts in prognosis and treatment. The American Journal of Medicine. 119 (7), 560-566 (2006).
  36. Bauer, W. R., et al. Theory of the BOLD effect in the capillary region: An analytical approach for the determination of T*2 in the capillary network of myocardium. Magnetic Resonance in Medicine. 41 (1), 51-62 (1999).
  37. Manka, R., et al. BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia. Journal of Cardiovascular Magnetic Resonance. 12 (1), 54 (2010).
  38. Dharmakumar, R., Qi, X., Hong, J., Wright, G. A. Detecting microcirculatory changes in blood oxygen state with steady-state free precession imaging. Magnetic Resonance in Medicine. 55 (6), 1372-1380 (2006).
  39. Kramer, C. M., et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. Journal of Cardiovascular Magnetic Resonance. 22 (1), 17 (2020).
  40. Expert Panel on MR Safety et al. ACR guidance document on MR safe practices: 2013. Journal of Magnetic Resonance Imaging: JMRI. 37 (3), 501-530 (2013).
  41. Macey, P. M., Kumar, R., Ogren, J. A., Woo, M. A., Harper, R. M. Global brain blood-oxygen level responses to autonomic challenges in obstructive sleep apnea. PLoS One. 9 (8), 105261 (2014).
  42. Cerqueira, M. D., et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 105 (4), 539-542 (2002).
  43. Hayoz, D., et al. Flow-mediated arterial dilation is abnormal in congestive heart failure. Circulation. 87 (6), 92-96 (1993).
  44. Hillier, E., Friedrich, M. G. The potential of oxygenation-sensitive CMR in heart failure. Current Heart Failure Reports. 18 (5), 304-314 (2021).
  45. Hawkins, S. M., et al. Hyperventilation-induced heart rate response as a potential marker for cardiovascular disease. Scientific Reports. 9 (1), 17887 (2019).
  46. Dass, S., et al. No evidence of myocardial oxygen deprivation in nonischemic heart failure. Circulation: Heart Failure. 8 (6), 1088-1093 (2015).
  47. Endemann, D. H., Schiffrin, E. L. Endothelial dysfunction. Journal of the American Society of Nephrology. 15 (8), 1983-1992 (2004).
  48. Costanzo, M. R., et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. The Journal of Heart and Lung Transplantation. 29 (8), 914-956 (2010).
  49. Lanza, G. A. Cardiac syndrome X: A critical overview and future perspectives. Heart. 93 (2), 159-166 (2007).
  50. Gould, K. L., Johnson, N. P. Coronary physiology beyond coronary flow reserve in microvascular angina: JACC state-of-the-art review. Journal of the American College of Cardiology. 72 (21), 2642-2662 (2018).
  51. Guensch, D. P., Nadeshalingam, G., Fischer, K., Stalder, A. F., Friedrich, M. G. The impact of hematocrit on oxygenation-sensitive cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance. 18 (1), 42 (2016).
  52. Dharmakumar, R., et al. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0T: Theory and experimental evaluation in canines. Journal of Magnetic Resonance Imaging. 27 (5), 1037-1045 (2008).
  53. Hillier, E., Benovoy, M., Friedrich, M. A fully automated post-processing tool identifies a reduced global myocardial oxygenation reserve in patients with ischemia and no obstructive coronary artery stenosis when compared to patients with significant CAD. SCMR 25th Annual Scientific Sessions. , (2022).
check_url/fr/64149?article_type=t

Play Video

Citer Cet Article
Hillier, E., Covone, J., Friedrich, M. G. Oxygenation-sensitive Cardiac MRI with Vasoactive Breathing Maneuvers for the Non-invasive Assessment of Coronary Microvascular Dysfunction. J. Vis. Exp. (186), e64149, doi:10.3791/64149 (2022).

View Video