Summary

在蛋卵外 研究中研究鸟类内耳发育的方法

Published: June 16, 2022
doi:

Summary

雏鸡是一种具有成本效益、可及且广泛可用的模式生物,可用于各种研究。在这里,详细介绍了一系列协议,以了解鸟类内耳发育和再生的分子机制。

Abstract

内耳感知声音并使用耳蜗和前庭保持平衡。它通过使用称为毛细胞的专用机械感觉细胞类型来做到这一点。内耳的基础研究使人们深入了解了毛细胞的功能,以及失调如何导致听力损失和眩晕。在这项研究中,鼠标一直是杰出的模型系统。然而,像所有哺乳动物一样,小鼠已经失去了替代毛细胞的能力。因此,当试图了解恢复内耳功能的细胞疗法时,对其他脊椎动物物种的补充研究可以提供进一步的见解。鸟类的听觉上皮,基底(BP),是由机械感觉毛细胞(HC)组成的上皮片,由支持细胞(SC)插入。虽然基底和哺乳动物耳蜗的解剖结构不同,但内耳发育和听力的分子机制相似。这使得基底不仅成为比较研究的有用系统,而且有助于了解再生。在这里,我们描述了鸡内耳的解剖和操作技术。该技术显示了遗传和小分子抑制方法,为研究内耳发育的分子机制提供了有效的工具。在本文中, 我们讨论了使用 CRIPSR-Cas9缺失对基底进行遗传扰动的卵电穿孔技术,然后解剖基底。我们还展示了BP器官培养和培养基质的最佳使用,以观察上皮和毛细胞的发育。

Introduction

所有脊椎动物的内耳都来源于一个简单的上皮,称为耳基板12。这将产生所有必要的结构元素和细胞类型,以转导与听觉和平衡感知相关的机械感觉信息。毛细胞(HCs)是内耳的纤毛传感器,被支持细胞(SCs)包围。HC通过第八颅神经的神经元将信息传递给听觉后脑。这些也是从耳基板3产生的。声音的主要转导是在听觉HC的顶端表面通过机械敏感的毛束4实现的。这是通过修饰的基于肌动蛋白的突起(称为立体纤毛)介导的,这些突起以分级的阶梯模式排列5。此外,一种改良的初级纤毛,称为 kinocilium,组织毛束形成,并与最高的立体纤毛678 行相邻。立体纤毛的结构对于将源自声能的机械刺激转换为电神经信号的作用至关重要9。衰老、感染、耳声创伤或耳毒性休克对听觉HC的损害可导致部分或完全听力损失,在哺乳动物中,这是不可逆转的10

已经提出了可能修复这种损伤的细胞替代疗法1112。这项研究的方法是了解哺乳动物毛细胞的正常发育,并询问是否可以在内耳内可能存在的祖细胞样细胞中重新启动发育程序13。第二种方法是将目光投向哺乳动物之外,寻找非哺乳动物脊椎动物,其中听觉毛细胞发生强劲再生,例如鸟类1415。在鸟类中,毛细胞再生主要通过支持细胞去分化为祖细胞样状态发生,然后进行不对称有丝分裂以产生毛细胞和支持细胞16。此外,还观察到支持细胞的直接分化以产生毛细胞17

虽然鸟类听觉发育的机制确实与哺乳动物有显着相似之处,但存在差异18。雏鸡血压的HC和SC分化从胚胎第7天(E)开始就很明显,随着时间的推移变得更加明显。通过E12,可以看到图案良好且极化良好的基底(BP),通过E17可以看到发育良好的毛细胞19。这些时间点为分化、图案化和极性以及毛细胞成熟的机制提供了窗口。了解这些机制是保守的还是发散的很重要,因为它们提供了对机械感觉毛细胞起源的深层同源性的见解。

在这里,我们展示了在胚胎早期和晚期进行的一系列技术,以研究细胞过程,例如内耳器官发育过程中的增殖,命运规范,分化,模式化和维持。这补充了了解外植体培养中内耳发育的其他协议202122。我们首先讨论使用电穿孔将外源性DNA或RNA引入E3.5耳囊内的BP前体中。尽管遗传操作可以提供有价值的见解,但由此产生的表型可能是多效性的,因此是混淆的。在后期的内耳发育中尤其如此,其中细胞骨架重塑等基本过程在细胞分裂、组织形态发生和细胞特化中起着多种作用。我们提出了培养外植体的药理学抑制方案,其在控制剂量和治疗时间和持续时间方面具有优势,提供了发育机制的精确时空操作。

根据小抑制剂的治疗持续时间,可以使用不同的器官培养方法。在这里,我们展示了两种器官培养方法,可以深入了解上皮形态发生和细胞特化。一种使用胶原蛋白作为基质来培养耳蜗导管的 3D 培养方法可实现发育中的血压的稳健培养和实时可视化。为了了解立体纤毛的形成,我们提出了一种膜培养方法,使得上皮组织在刚性基质上培养,使肌动蛋白突起能够自由生长。这两种方法都允许下游处理,例如活细胞成像,免疫组织化学,扫描电子显微镜(SEM),细胞记录等。这些技术为有效使用雏鸡作为模型系统来理解和操纵鸟类听觉上皮的发育、成熟和再生提供了路线图。

Protocol

涉及受精鸡蛋和未孵化胚胎的采购,培养和使用的方案由卡纳塔克邦班加罗尔国家生物科学中心的机构动物伦理委员会批准。 1. 在 卵电穿孔中雏 鸡听觉前体 用于CRISPR/Cas9基因敲除的sgRNA设计和克隆为了创建基因敲除,设计引导RNA破坏基因的外显子区域,最好靠近编码区域的5’端。 使用网络工具CRISPOR23选择潜在的向导…

Representative Results

在电穿孔设置中,电极定位可以在转染领域发挥作用。正极放置在蛋黄下方,负极放置在胚胎上方(图1A)。这导致大部分内耳和两个前庭器官(图1B)和听基底(图1C,D)的GFP表达较高,证实了转染。 在评估CRISPR敲低的表型时,我们设计了引导RNA到毛细胞转录因子Atonal homolog1(Atoh1)。Atoh1的小?…

Discussion

雏鸡是实验室可以用来研究内耳的模式生物的一种经济高效且方便的补充。这里描述的方法在我们的实验室中经常使用,并补充了正在进行的哺乳动物内耳研究。 在卵子中 ,电穿孔用于将遗传操作引入鸡基因组。电穿孔还可用于引入编码靶向特定细胞器或亚细胞结构的荧光蛋白的构建体3536。虽然这是一个简单的程序,但在 卵子中 操纵…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们非常感谢NCBS,TIFR,Infosys-TIFR前沿研究基金,DST-SERB和皇家国家聋人研究所的支持。我们要感谢班加罗尔赫萨拉加塔的中央家禽发展组织和培训学院。我们感谢CIFF和EM设施和NCBS的实验室支持。我们感谢Yoshiko Takahashi和Koichi Kawakami的Tol2-eGFP和T2TP构建体,以及Guy Richardson的HCA和G19 Pcdh15抗体。我们感谢 Earlab 成员对该协议的持续支持和宝贵反馈。

Materials

Alexa Fluor 488 Phalloidin Thermo Fisher Scientific A12379
Alexa Fluor 647 Phalloidin Thermo Fisher Scientific A22287
Alt-R S.p. HiFi Cas9 Nuclease V3 Integrated DNA Technologies 1081061 High fidelity Cas9 protein
Anti-GFP antibody Abcam ab290 Rabbit polyclonal to GFP
Bovine Serum Albumin Sigma-Aldrich A9647
Calcium Chloride Dihydrate Thermo Fisher Scientific Q12135
Collagen I, rat tail Thermo Fisher Scientific A1048301
Critical Point Dryer Leica EM CPD300 Leica
CUY-21 Electroporator Nepagene
Dimethyl sulfoxide (DMSO) Sigma-Aldrich D8418
DM5000B Widefield Microscope Leica
DMEM, high glucose, GlutaMAX Supplement, pyruvate Thermo Fisher Scientific 10569010
Dumont #5 Forceps Fine Science Tools 11251-20
Dumont #55 Forceps Fine Science Tools 11255-20
Fast Green FCF Sigma-Aldrich F7252
Fluoroshield Sigma-Aldrich F6182
FLUOVIEW 3000 Laser Scanning Microscope Olympus
Glutaraldehyde (25 %) Sigma-Aldrich 340855
Goat anti-Mouse IgG Secondary Antibody, Alexa Fluor 488 Thermo Fisher Scientific A-11001
Goat anti-Mouse IgG Secondary Antibody, Alexa Fluor 594 Thermo Fisher Scientific A-11032
Goat anti-Rabbit IgG Secondary Antibody, Alexa Fluor 488 Thermo Fisher Scientific A-11008
Goat Serum Sterile filtered HiMedia RM10701 Heat inactivated
Hanks' Balanced Salt Solution (HBSS) Thermo Fisher Scientific 14025092
LSM980 Airyscan Microscope Zeiss
Millicell Cell Culture Insert, 30 mm, hydrophilic PTFE, 0.4 µm Sigma-Aldrich PICM03050
MVX10 Stereo Microscope Olympus
MYO7A antibody DSHB 138-1 Mouse monoclonal to Unconventional myosin-VIIa
MZ16 Dissecting microscope Leica
N-2 Supplement (100X) Thermo Fisher Scientific 17502048
Noyes Scissors, 14cm (5.5'') World Precision Instruments 501237
Osmium tetroxide (4%) Sigma-Aldrich 75632
Paraformaldehyde Sigma-Aldrich 158127
PC-10 Puller Narishige
pcU6_1sgRNA Addgene 92395 Mini vector with modified chicken U6 promoter
Penicillin G sodium salt Sigma-Aldrich P3032
Phosphate Buffered Saline (PBS) Thermo Fisher Scientific 10010023
ProLong Gold Antifade Mountant Thermo Fisher Scientific P36934
SMZ1500 Dissecting microscope Nikon
Sodium Cacodylate Buffer, 0.2M Electron Microscopy Sciences 11652
Sodium chloride HiMedia GRM853
Sputtre Coater K550X Emitech
Standard Glass Capillaries 3 in, OD 1.0 mm, No Filament World Precision Instruments 1B100-3
Sucrose Sigma-Aldrich 84097
The MERLIN Compact VP Zeiss
Thiocarbohydrazide Alfa Aesar L01205
TWEEN 20 Sigma-Aldrich P1379

References

  1. Sai, X., Ladher, R. K. Early steps in inner ear development: induction and morphogenesis of the otic placode. Frontiers in Pharmacology. 6, 19 (2015).
  2. Groves, A. K., Fekete, D. M. Shaping sound in space: the regulation of inner ear patterning. Development. 139 (2), 245-257 (2012).
  3. Driver, E. C., Kelley, M. W. Development of the cochlea. Development. 147 (12), (2020).
  4. Richardson, G. P., Petit, C. Hair-bundle links: genetics as the gateway to function. Cold Spring Harbor Perspectives in Medicine. 9 (12), 033142 (2019).
  5. Tilney, L. G., Cotanche, D. A., Tilney, M. S. Actin filaments, stereocilia and hair cells of the bird cochlea. VI. How the number and arrangement of stereocilia are determined. Development. 116 (1), 213-226 (1992).
  6. Jones, C., et al. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nature Genetics. 40 (1), 69-77 (2008).
  7. Sipe, C. W., Lu, X. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms. Development. 138 (16), 3441-3449 (2011).
  8. May-Simera, H. L., Kelley, M. W. Cilia, Wnt signaling, and the cytoskeleton. Cilia. 1 (1), 1 (2012).
  9. Ebrahim, S., et al. Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like. Nature Communications. 7, 10833 (2016).
  10. Corwin, J. T., Cotanche, D. A. Regeneration of sensory hair cells after acoustic trauma. Science. 240 (4860), 1772-1774 (1988).
  11. Collado, M. S., Burns, J. C., Hu, Z., Corwin, J. T. Recent advances in hair cell regeneration research. Current Opinion in Otolaryngology & Head and Neck Surgery. 16 (5), 465-471 (2008).
  12. Edge, A. S., Chen, Z. Y. Hair cell regeneration. Current Opinion in Neurobiology. 18 (4), 377-382 (2008).
  13. Atkinson, P. J., Huarcaya Najarro, E., Sayyid, Z. N., Cheng, A. G. Sensory hair cell development and regeneration: similarities and differences. Development. 142 (9), 1561-1571 (2015).
  14. Brignull, H. R., Raible, D. W., Stone, J. S. Feathers and fins: non-mammalian models for hair cell regeneration. Brain Research. 1277, 12-23 (2009).
  15. Rubel, E. W., Furrer, S. A., Stone, J. S. A brief history of hair cell regeneration research and speculations on the future. Hearing Research. 297, 42-51 (2013).
  16. Stone, J. S., Cotanche, D. A. Hair cell regeneration in the avian auditory epithelium. The International Journal of Developmental Biology. 51 (6-7), 633-647 (2007).
  17. Roberson, D. W., Alosi, J. A., Cotanche, D. A. Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. Journal of Neuroscience Research. 78 (4), 461-471 (2004).
  18. Fritzsch, B., Beisel, K. W., Pauley, S., Soukup, G. Molecular evolution of the vertebrate mechanosensory cell and ear. The International Journal of Developmental Biology. 51 (6-7), 663-678 (2007).
  19. Tilney, L. G., DeRosier, D. J. Actin filaments, stereocilia, and hair cells of the bird cochlea. IV. How the actin filaments become organized in developing stereocilia and in the cuticular plate. Biologie du développement. 116 (1), 119-129 (1986).
  20. Oesterle, E. C., Tsue, T. T., Reh, T. A., Rubel, E. W. Hair-cell regeneration in organ cultures of the postnatal chicken inner ear. Hearing Research. 70 (1), 85-108 (1993).
  21. Honda, A., Freeman, S. D., Sai, X., Ladher, R. K., O’Neill, P. From placode to labyrinth: culture of the chicken inner ear. Methods. 66 (3), 447-453 (2014).
  22. Matsunaga, M., et al. Initiation of supporting cell activation for hair cell regeneration in the avian auditory epithelium: an explant culture model. Frontiers in Cellular Neuroscience. 14, 583994 (2020).
  23. Concordet, J. P., Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research. 46, 242-245 (2018).
  24. Gandhi, S., Piacentino, M. L., Vieceli, F. M., Bronner, M. E. Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo. Biologie du développement. 432 (1), 86-97 (2017).
  25. Green, M. R., Sambrook, J. Cloning and transformation with plasmid vectors. Cold Spring Harbor Protocols. 2021 (11), (2021).
  26. Sato, Y., et al. Stable integration and conditional expression of electroporated transgenes in chicken embryos. Biologie du développement. 305 (2), 616-624 (2007).
  27. Takahashi, Y., Watanabe, T., Nakagawa, S., Kawakami, K., Sato, Y. Transposon-mediated stable integration and tetracycline-inducible expression of electroporated transgenes in chicken embryos. Methods in Cell Biology. 87, 271-280 (2008).
  28. Mashal, R. D., Koontz, J., Sklar, J. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nature Genetics. 9 (2), 177-183 (1995).
  29. Ogier, J. M., Burt, R. A., Drury, H. R., Lim, R., Nayagam, B. A. Organotypic culture of neonatal murine inner ear explants. Frontiers in Cellular Neuroscience. 13, 170 (2019).
  30. Davies, S., Forge, A. Preparation of the mammalian organ of Corti for scanning electron microscopy. Journal of Microscopy. 147, 89-101 (1987).
  31. Parker, A., Chessum, L., Mburu, P., Sanderson, J., Bowl, M. R. Light and electron microscopy methods for examination of cochlear morphology in mouse models of deafness. Current Protocols in Mouse Biology. 6 (3), 272-306 (2016).
  32. Bermingham, N. A., et al. Math1: an essential gene for the generation of inner ear hair cells. Science. 284 (5421), 1837-1841 (1999).
  33. Goodyear, R. J., Forge, A., Legan, P. K., Richardson, G. P. Asymmetric distribution of cadherin 23 and protocadherin 15 in the kinocilial links of avian sensory hair cells. The Journal of Comparative Neurology. 518 (21), 4288-4297 (2010).
  34. Bartolami, S., Goodyear, R., Richardson, G. Appearance and distribution of the 275 kD hair-cell antigen during development of the avian inner ear. The Journal of Comparative Neurology. 314 (4), 777-788 (1991).
  35. Funahashi, J., Nakamura, H. Electroporation in avian embryos. Methods in Molecular Biology. 461, 377-382 (2008).
  36. Nakamura, H., Funahashi, J. Electroporation: past, present and future. Development, Growth & Differentiation. 55 (1), 15-19 (2013).
  37. Olaya-Sanchez, D., et al. Fgf3 and Fgf16 expression patterns define spatial and temporal domains in the developing chick inner ear. Brain Structure & Function. 222 (1), 131-149 (2017).
  38. Jones, J. M., Warchol, M. E. Expression of the Gata3 transcription factor in the acoustic ganglion of the developing avian inner ear. The Journal of Comparative Neurology. 516 (6), 507-518 (2009).
  39. Serralbo, O., et al. Transgenesis and web resources in quail. Elife. 9, 56312 (2020).

Play Video

Citer Cet Article
Singh, N., Prakash, A., Chakravarthy, S. R., Kaushik, R., Ladher, R. K. In Ovo and Ex Ovo Methods to Study Avian Inner Ear Development. J. Vis. Exp. (184), e64172, doi:10.3791/64172 (2022).

View Video