Summary

通过受精卵的CRISPR电穿孔对小鼠进行高效基因组编辑

Published: December 16, 2022
doi:

Summary

在这里,我们描述了一种用于高效生成转基因小鼠的简单技术,称为CRISPR RNP受精卵电穿孔(CRISPR-EZ)。该方法通过电穿孔将编辑试剂以接近100%的效率输送到胚胎中。该方案对哺乳动物胚胎中的点突变、小基因组插入和缺失有效。

Abstract

凭借卓越的效率、准确性和易用性,CRISPR/Cas9系统显著改善了细胞培养和实验动物实验中的基因组编辑。在生成动物模型时,受精卵电穿孔可提供更高的效率、简单性、成本和通量,作为显微注射金标准方法的替代方案。电穿孔也更温和,具有更高的活力,并且可靠地将Cas9/单向导RNA(sgRNA)核糖核蛋白(RNP)递送到常见实验室小鼠品系(例如C57BL / 6J和C57BL / 6N)的受精卵中,接近100%的递送效率。该技术可实现插入/缺失(插入缺失)突变、点突变、整个基因或外显子的缺失,以及 100-200 bp 范围内的小插入以插入 LoxP 或短标签,如 FLAG、HA 或 V5。在不断改进的同时,我们在这里展示了CRISPR-EZ的当前状态,其中包括通过 体外 转录,胚胎处理,RNP组装,电穿孔和植入前胚胎的基因分型产生sgRNA。具有最少操作胚胎经验的研究生水平的研究人员可以使用该协议在不到 1 周的时间内获得经过基因编辑的胚胎。在这里,我们提供了一种简单,低成本,高效,高容量的方法,可用于小鼠胚胎。

Introduction

自CRISPR编辑1,23出现以来,活小鼠的基因组编辑已经大大简化并且变得容易获得且更实惠。最初的动物编辑尝试使用显微注射将CRISPR Cas9 mRNA / sgRNA递送到前核阶段胚胎中456虽然显微注射非常有效,但完全掌握它所需的练习量可能不适合受训者和学生,并且还需要昂贵的设备,而资金有限的实验室无法负担。显微注射通常由转基因设施的专家技术人员进行,其时间表和服务价格对许多研究人员来说是限速的。一种更容易获得的方法是电穿孔,它已被证明对于将CRISPR Cas9 mRNA / sgRNA递送到前核阶段胚胎中非常有效7。CRISPR基因组编辑和递送策略的进一步改进表明,已经与sgRNA结合的预组装RNP可能是减少嵌合体的有效手段8

开发和使用该方案背后的基本原理是绕过与显微注射相关的许多限制和障碍。顾名思义,一种简单、内部且经济高效的方法可以快速确定未经测试的 sgRNA 设计是否值得在显微进样实验中使用,这将是一个非常方便的首过质量控制步骤(图 1)。虽然这种方法不能取代显微注射用于更复杂的策略,例如为基于重组的结果引入长供体DNA序列,但它是不太复杂的策略的理想选择,如小的缺失或插入以及标记基因。这种方法适用于具有基本胚胎操作技能的研究人员,他们有简单的编辑需求,希望在植入前发育的时间范围内测试他们的假设,或者更喜欢在安排与显微注射专家的预约之前测试胚胎中的sgRNA。在这里,编辑试剂通过电穿孔(一系列电脉冲) Cas9 / sgRNA RNP的形式瞬时递送到前核阶段胚胎中,以最大限度地提高效率,同时减少嵌合体8。使用胚胎基因分型方法,编辑结果可在大约 1 周内获得9,从而以显着降低的成本减少了对各种显微注射应用的需求。

该方法的有效性在原核胚胎阶段达到峰值,此时胚胎尚未融合母本和父本原核或进入S期(图2)。超排卵用于最大化受精卵的数量,但同时产生原核受精卵和未受精卵。健康的受精卵也可以在电穿孔前预先选择,以提高整体效率。由于其他电穿孔方案已经有效地编辑了受精卵,而无需包括类似的步骤710,1112,131415因此该协议的可选步骤是透明带(ZP)的轻微侵蚀。ZP 是一种糖蛋白层,有助于精子结合、顶体反应和核前期胚胎周围的受精。根据我们的经验,我们发现对ZP的温和酸基侵蚀提供了可靠的Cas9 RNP电穿孔递送,对活性的影响很小。

我们已经观察到,在C57BL / 6J和C57BL /6N 916等研究中常用的小鼠品系中,通过电穿孔RNP递送率高达100%。独立小组还开发了基于电穿孔的程序,其效率大于或匹配显微注射11,12,13,14,1517,电穿孔方案在大鼠1819,猪202122和牛23中运行良好,因此我们建议读者比较协议以找到最适合其实验和设备需求的条件。这里描述的系统使用常见的材料和设备,只需要基本的胚胎操作技能。该技术对一系列编辑策略有效,使该方法被研究界广泛使用。

设计理想的小向导RNA(sgRNA)对于高效编辑至关重要。我们建议直接在小鼠胚胎中为每个靶位点筛选两到三种sgRNA策略,尤其是在需要生成小鼠系的情况下。一旦设计出来,建议使用体转录(IVT)等无克隆方法来产生高质量的sgRNA3。将RNP和sgRNA与30-50个处理过的前核阶段胚胎混合,并暴露于一系列电脉冲中,首先暂时透化ZP和细胞膜,随后的脉冲保持孔隙打开并通过受精卵24对RNP进行电泳。优化后,我们发现在30 V下对大体胚胎(~50)的6个3 ms脉冲最适合编辑有效性和活力,提供高效的Cas9 / sgRNA RNP递送91625。可以使用 CRISPR 编辑中常见的各种验证策略来确认单个小鼠桑葚中的编辑事件,例如限制性片段长度多态性 (RFLP)、T7 核酸内切酶消化和感兴趣区域的 Sanger 测序26

目前的方法最适合简单的编辑方案(图3),例如插入/缺失(插入缺失),外显子大小的500-2000 bp缺失,以及点突变和小插入的传递,例如C或N端标签(例如,FLAG,HA或V5)91627复杂基因组编辑的潜力,如大量插入荧光标签或条件等位基因,仍然不确定,并且是即将进行的改进的当前重点。

该方法易于掌握,可用于在1周内 快速测试培养小鼠胚胎中的sgRNA(图1)。这项工作中提出的是一个六步方案,其中包括1)sgRNA设计;2)sgRNA合成;3)超排卵和交配;4)胚胎培养、采集和加工;5)RNP组装和电穿孔;6)胚胎培养和基因分型。提供有关所有所用材料的信息(材料表)。作为阳性对照,编辑 酪氨酸酶(Tyr)位点916 的试剂已包含在 补充表1中。

Protocol

在整个协议中,所有动物护理和使用都遵守《动物福利法》政策,ILAR实验动物护理和使用指南,并遵循AVMA安乐死和宾夕法尼亚大学机构动物护理和使用委员会(IACUC)的指导方针和政策。宾夕法尼亚大学IACUC为该项目审查并批准了动物护理和使用协议。作为合规性和谨慎起见,请在尝试此协议之前寻求所有必要的授权。 1. sgRNA和可选的供体寡核苷酸设计 sg…

Representative Results

该方法可产生超过 100 μg 的 sgRNA(浓度为 >6,000 ng/L 时为 20 μL),可实现高效的 Cas9/sgRNA RNP 组装。这里描述的常规超排卵方法通常为每个插入的雌性产生10-20个活胚胎。由于与胚胎操作相关的处理错误和典型损失,预计80%的胚胎在电穿孔后受精,存活且状况良好。为了帮助研究人员执行成功的实验,我们提供了一个将小鼠Tyr位点作为阳性对照的示例策略(图6),包括寡核苷酸设计(图6A,…

Discussion

这里介绍的是一种简单高效的小鼠基因组编辑技术。电穿孔可用于在1-2周内产生修饰的胚胎(图1),并且可以在6周内产生经过编辑的小鼠9。与同时期开发的基于电穿孔的RNPs7,10,11,12,13,141517<su…

Divulgations

The authors have nothing to disclose.

Acknowledgements

A.J.M.创造了导致CRISPR-EZ发展的原始概念并产生了这些数字。C.K.D.为当前手稿汇编并改编了内部和已发表的协议。A.J.M. 由 NIH (R00HD096108) 提供支持。

Materials

0.1-cm-gap electroporation cuvette Bio-Rad cat. no. 1652089 Electroporation
26-G, 1/2-inch needle BD cat. no. 305111 Superovulation
3–8-month-old male mice and 3- to 5-week-old female mice JAX cat. no. 000664 Superovulation
35-mm Tissue culture dish Greiner Bio-One, cat. no. 627-160 Embryo Culture
60-mm Tissue culture dish Greiner Bio-One, cat. no. 628-160 Embryo Processing
6x loading dye Thermo Fisher Scientific cat. no. R0611 sgRNA Synthesis and Genotyping
Acidic Tyrode's (AT) solution, embryo culture grade Sigma-Aldrich, cat. no. T1788 Embryo Processing
BSA, embryo culture grade Sigma-Aldrich cat. no. A3311 Embryo Processing and Culture
Cas9 protein Alt-R S.p. Cas9 nuclease 3NLS cat. no. 1074181 Electroporation
DNase I, RNase-free New England BioLabs, cat. no. M0303 sgRNA Synthesis
DPBS(calcium and magnesium free) Gibco cat. no. 14190-144 Embryo Processing
EcoRI NEB cat. no. R3101S Genotyping
EDTA, anhydrous Sigma-Aldrich cat. no. EDS-100G RNP Buffer
Ethanol Koptec cat. no. V1016 sgRNA Synthesis
Gelatin (powder) type B, laboratory grade Fisher, cat. no. G7-500 Lysis Buffer
Glycerol, molecular-biology grade Fisher cat. no. BP229 RNP Buffer
Taq Polymerase Promega cat. no. M712 Genotyping
HEPES, cell culture grade Sigma-Aldrich cat. no. H4034 RNP Buffer
HinfI (10,000 U/mL) NEB cat. no. R0155S Genotyping
HiScribe T7 High Yield RNA Synthesis Kit New England BioLabs, cat. no. E2040 sgRNA Synthesis
Human chorion gonadotropin, lyophilized (hCG) Millipore cat. no. 230734 Superovulation
Hyaluronidase/M2 Millipore cat. no. MR-051-F Embryo Processing
KSOMaa Evolve medium (potassium-supplemented simplex-optimized medium plus amino acids) Zenith Biotech cat. no. ZEKS-050 Embryo Culture
LE agarose, analytical grade BioExpress cat. no. E-3120-500 sgRNA Synthesis and Genotyping
M2 medium Zenith Biotech cat. no. ZFM2-050 Embryo Processing
Magnesium chloride, anhydrous (MgCl2) Sigma-Aldrich cat. no. M8266 RNP and Lysis Buffer
Mineral Oil Millipore cat. no. ES-005C Embryo Culture
Nonidet P-40,substitute (NP-40) Sigma-Aldrich cat. no. 74385 Lysis Buffer
Nuclease-free water, molecular-biology grade Ambion cat. no. AM9937 sgRNA Synthesis and Genotyping
Oligos for sgRNA synthesis, donor oligo and PCR primers for genotyping Integrated DNA Technologies custom orders sgRNA Design
Reduced serum medium Thermo Fisher Scientific cat. no. 31985062 Embryo Culture
High-fidelity DNA polymerase New England BioLabs, cat. no. M0530 sgRNA Synthesis
Potassium chloridemolecular-biology grade (KCl) Sigma-Aldrich cat. no. P9333 RNP and Lysis Buffer
Pregnant mare serum gonadotropin lyophilizd ((PMSG) ProspecBio cat. no. HOR-272 Superovulation
Proteinase K, molecular-biology grade Fisher cat. no. BP1700-100 Lysis Buffer
RNase-free 1.5-mL microcentrifuge tube VWR cat. no. 20170-333 sgRNA Synthesis and Genotyping
RNase-free eight-well PCR strip tubes VWR cat. no. 82006-606 sgRNA Synthesis and Genotyping
Magnetic purification beads GE Healthcare cat. no. 65152105050250 sgRNA Synthesis
Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) Sigma-Aldrich cat. no. C4706 RNP Buffer
Tris-HCl solution, pH 8.5 molecular-biology grade Teknova cat. no. T1085 Lysis Buffer
Tween 20 molecular-biology grade Sigma-Aldrich cat. no. P7949-500 Lysis Buffer

References

  1. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  2. Xu, H., et al. Sequence determinants of improved CRISPR sgRNA design. Genome Research. 25 (8), 1147-1157 (2015).
  3. Lin, S., Staahl, B., Alla, R. K., Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife. 3, 04766 (2014).
  4. Wang, B., et al. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques. 59 (4), 201-208 (2015).
  5. Yang, H., Wang, H., Jaenisch, R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nature Protocols. 9 (8), 1956-1968 (2014).
  6. Fujii, W., Onuma, A., Sugiura, K., Naito, K. One-step generation of phenotype-expressing triple-knockout mice with heritable mutated alleles by the CRISPR/Cas9 system. Journal of Reproduction and Development. 60 (4), 324-327 (2014).
  7. Kaneko, T., et al. Simple genome editing of rodent intact embryos by electroporation. PLoS One. 10 (11), 0142755 (2015).
  8. Mehravar, M., Shirazi, A., Nazari, M., Banan, M. Mosaicism in CRISPR/Cas9-mediated genome editing. Biologie du développement. 445 (2), 156-162 (2019).
  9. Modzelewski, A. J., et al. Efficient mouse genome engineering by CRISPR-EZ technology. Nature Protocols. 13 (6), 1253-1274 (2018).
  10. Gurumurthy, C. B., et al. Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nature Protocols. 14 (8), 2452-2482 (2019).
  11. Hur, J. K., et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nature Biotechnology. 34 (8), 807-808 (2016).
  12. Tröder, S. E., et al. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS One. 13 (5), 0196891 (2018).
  13. Qin, W., et al. Efficient CRISPR/cas9-mediated genome editing in mice by zygote electroporation of nuclease. Génétique. 200 (2), 423-430 (2015).
  14. Hashimoto, M., Yamashita, Y., Takemoto, T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Biologie du développement. 418 (1), 1-9 (2016).
  15. Teixeira, M., et al. Electroporation of mice zygotes with dual guide RNA/Cas9 complexes for simple and efficient cloning-free genome editing. Scientific Reports. 8, 474 (2018).
  16. Chen, S., Lee, B., Lee, A. Y. -. F., Modzelewski, A. J., He, L. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. Journal of Biological Chemistry. 291 (28), 14457-14467 (2016).
  17. Wang, W., et al. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increased the efficiency of model creation. Journal of Genetics and Genomics. 43 (5), 319-327 (2016).
  18. Mizuno, N., et al. Intra-embryo gene cassette knockin by CRISPR/Cas9-mediated genome editing with adeno-associated viral vector. iScience. 9, 286-297 (2018).
  19. Remy, S., et al. Generation of gene-edited rats by delivery of CRISPR/Cas9 protein and donor DNA into intact zygotes using electroporation. Scientific Reports. 7, 16554 (2017).
  20. Tanihara, F., et al. Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation. Animal Science Journal. 90 (1), 55-61 (2019).
  21. Zhou, X., Guo, H., Chen, K., Cheng, H., Zhou, R. Identification, chromosomal mapping and conserved synteny of porcine Argonaute family of genes. Genetica. 138 (7), 805-812 (2010).
  22. Nishio, K., et al. Effects of voltage strength during electroporation on the development and quality of in vitro-produced porcine embryos. Reproduction in Domestic Animals. 53 (2), 313-318 (2018).
  23. Camargo, L. S. A., Owen, J. R., van Eenennaam, A. L., Ross, P. J. Efficient one-step knockout by electroporation of ribonucleoproteins into zona-intact bovine embryos. Frontiers in Genetics. 11, 570069 (2020).
  24. Escoffre, J. M., et al. What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Molecular Biotechnology. 41 (3), 286-295 (2009).
  25. Chen, S., et al. CRISPR-READI: Efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Reports. 27 (13), 3780-3789 (2019).
  26. Sentmanat, M. F., Peters, S. T., Florian, C. P., Connelly, J. P., Pruett-Miller, S. M. A survey of validation strategies for CRISPR-Cas9 editing. Scientific Reports. 8, 888 (2018).
  27. Modzelewski, A. J., et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell. 184 (22), 5541-5558 (2021).
  28. Xu, H., et al. Sequence determinants of improved CRISPR sgRNA design. Genome Research. 25 (8), 1147-1157 (2015).
  29. Sanson, K. R., et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nature Communications. 9 (1), 5416 (2018).
  30. Okamoto, S., Amaishi, Y., Maki, I., Enoki, T., Mineno, J. Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Scientific Reports. 9, 14811 (2019).
  31. Duselis, A. R., Vrana, P. B. Retrieval of mouse oocytes. Journal of Visualized Experiments. (3), e185 (2007).
  32. Takahashi, G., et al. GONAD: Genome-editing via oviductal nucleic acids delivery system: A novel microinjection independent genome engineering method in mice. Scientific Reports. 5, 11406 (2015).
  33. Tu, Z., et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Scientific Reports. 7, 42081 (2017).
  34. Aida, T., et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biology. 16 (1), 87 (2015).
  35. Zhu, L., et al. Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics. 10, 47 (2009).
  36. Quadros, R. M., et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biology. 18, 92 (2017).
  37. Gurumurthy, C. B., Saunders, T. L., Ohtsuka, M. Designing and generating a mouse model: frequently asked questions. Journal of Biomedical Research. 35 (2), 76-90 (2021).
  38. Nakajima, K., et al. Exome sequencing in the knockin mice generated using the CRISPR/ Cas system. Scientific Reports. 6, 34703 (2016).
  39. Iyer, V., et al. Off-target mutations are rare in Cas9-modified mice. Nature Methods. 12 (6), 479 (2015).
  40. Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153 (4), 910-918 (2013).
check_url/fr/64302?article_type=t

Play Video

Citer Cet Article
Diallo, C. K., Modzelewski, A. J. Efficient Genome Editing of Mice by CRISPR Electroporation of Zygotes. J. Vis. Exp. (190), e64302, doi:10.3791/64302 (2022).

View Video