Summary

Microengineering 3D 콜라겐 하이드로겔(장거리 섬유 정렬 포함)

Published: September 07, 2022
doi:

Summary

이 프로토콜은 3D 콜라겐 하이드로겔(두께 <250μm)에서 섬유를 정렬하기 위해 확장 변형(스트레칭)을 생성하기 위해 유체 흐름 방향을 따라 기하학이 변화하는 미세유체 채널의 사용을 보여줍니다. 결과 정렬은 수 밀리미터에 걸쳐 확장되며 연신 변형률의 영향을 받습니다.

Abstract

정렬된 콜라겐 I(COL1) 섬유는 종양 세포 운동성을 안내하고, 내피 세포 형태에 영향을 미치고, 줄기 세포 분화를 제어하며, 심장 및 근골격계 조직의 특징입니다. 시험관 내에서 정렬된 미세 환경에 대한 세포 반응을 연구하기 위해 자기, 기계, 세포 기반 및 미세유체 방법을 포함하여 정의된 섬유 정렬을 가진 COL1 매트릭스를 생성하기 위한 여러 프로토콜이 개발되었습니다. 이 중 미세유체 접근법은 유체 흐름 및 세포 미세 환경에 대한 정확한 제어와 같은 고급 기능을 제공합니다. 그러나 고급 체외 배양 플랫폼을 위해 정렬된 COL1 매트릭스를 생성하기 위한 미세유체 접근 방식은 500μm 미만의 거리에 걸쳐 확장되고 3D 세포 배양 응용 분야에 도움이 되지 않는 COL1 섬유의 얇은 “매트”(두께 <40μm)로 제한되었습니다. 여기에서 우리는 미세유체 장치에서 정의된 섬유 정렬의 밀리미터 규모 영역을 가진 3D COL1 매트릭스(두께 130-250μm)를 제작하기 위한 프로토콜을 제시합니다. 이 플랫폼은 세포 배양을 위한 미세 엔지니어링 매트릭스에 직접 액세스할 수 있도록 하여 구조화된 조직 미세 환경을 모델링하는 고급 세포 배양 기능을 제공합니다.

Introduction

세포는 세포외 기질(ECM)이라고 하는 복잡한 3D 섬유 네트워크에 존재하며, 그 대부분은 구조 단백질 콜라겐 유형 I(COL1)1,2로 구성됩니다. ECM의 생물물리학적 특성은 세포에 안내 신호를 제공하고, 이에 대한 반응으로 세포는 ECM 마이크로아키텍처 3,4,5를 리모델링합니다. 이러한 상호 세포-매트릭스 상호작용은 종양 환경(7,8,9)에서 혈관신생 및 세포 침윤을 촉진하고 세포 형태(10,11,12), 분극(13) 및 분화(14)에 영향을 미치는 정렬된 COL1섬유 도메인(6)을 발생시킬 수 있다. 정렬된 콜라겐 섬유는 또한 상처 치유를 촉진하고15, 조직 발달에 핵심적인 역할을 하며16, 장거리 세포 통신에 기여한다(17,18). 따라서 시험관 내에서 네이티브 COL1 섬유 마이크로아키텍처를 복제하는 것은 정렬된 미세 환경에 대한 세포 반응을 연구하기 위한 구조화된 모델을 개발하기 위한 중요한 단계입니다.

미세유체 세포 배양 시스템은 미세생리학적 시스템(MPS)19,20,21,22,23을 개발하기 위한 선호 기술로 확립되었습니다. 유리한 마이크로 스케일링 효과를 활용하여이 시스템은 유체 흐름을 정밀하게 제어하고 기계적 힘의 제어 된 도입을 지원하며 마이크로 채널내에서 생화학 적 미세 환경을 정의합니다 21,24,25,26,27. MPS 플랫폼은 조직 특이적 미세 환경을 모델링하고 다기관 상호작용을 연구하는 데 사용되어 왔다28. 동시에, 하이드로겔은 생체 내에서 관찰되는 ECM의 3D 역학 및 생물학적 영향을 요약하기 위해 널리 연구되었습니다 29,30. 3D 배양을 미세유체 플랫폼과 통합하는 데 점점 더 중점을 두면서 다양한 접근 방식이 미세유체 장치에서 COL1 하이드로겔을 결합할 수 있습니다31,32,33. 그러나, 미세유체 채널에서 COL1 하이드로겔을 정렬하는 방법은 채널<1 mm 너비의 얇은 2D "매트"(두께 <40 μm)로 제한되어, 정렬된 3D 미세 환경31,34,35,36에서 세포 반응을 모델링할 수 있는 제한된 잠재력을 제공한다.

미세유체 시스템에서 정렬된 3D COL1 하이드로겔을 달성하기 위해, 자가 조립 COL1 용액이 국소 신장 흐름(흐름 방향에 따른 속도 변화)에 노출될 때, 생성된 COL1 하이드로겔은 그들이 경험하는 신장 변형률의 크기에 정비례하는 섬유 정렬 정도를 나타내는 것으로 나타났다37, 38. 이 프로토콜의 마이크로채널 설계는 두 가지 면에서 독특합니다. 첫째, 분할된 설계는 COL1 솔루션에 국부적인 확장 변형을 도입하고, 둘째, “투피스” 구조를 통해 사용자는 COL1 섬유를 정렬한 다음 채널을 분해하여 정렬된 섬유에 개방형 형식으로 직접 액세스할 수 있습니다. 이 접근법은 정렬된 COL1 매트릭스를 갖는 미세생리학적 시스템을 개발하는 모듈식 미세유체 플랫폼을 개발하기 위해 추가로 채택될 수 있습니다. 다음 프로토콜은 분할된 마이크로채널을 제조하는 과정을 설명하고 소 아텔로 COL1을 정렬하기 위한 채널 사용에 대해 자세히 설명합니다. 이 프로토콜은 또한 개방형 웰 형식으로 COL1에서 세포를 배양하기 위한 지침을 제공하고 모듈식 자기 기본 계층을 사용하여 플랫폼에 기능을 추가하는 방법에 대해 설명합니다.

Protocol

1. 2피스 채널 및 모듈식 플랫폼 베이스 제작 참고: 미세유체 채널은 정의된 두께의 폴리디메틸 실록산(PDMS) 시트에서 면도날로 절단된 미세유체 채널 “컷아웃”과 컷아웃에 가역적으로 결합되어 채널을 형성하는 채널 덮개의 두 부분을 사용하여 구성됩니다. 채널은 미디어 저장소 역할을 하는 폴리(메틸 메타크릴레이트)(PMMA) 프레임으로 둘러싸여 있습니다(<strong clas…

Representative Results

자체 조립 COL1 용액이 단면적이 감소하는 채널을 통해 흐를 때 COL1 용액의 유속 속도(vx)는 두 세그먼트(∂x) 사이의 수축 길이를 따라 크기 ∂v x만큼 국부적으로 증가하여 ε̇ = ∂v x/∂x인 확장 변형률(ε̇)이 발생합니다. 연신 변형률은 그림 2에서 볼 수 있듯이 입자 이미지 유속계(PIV)를 사용하여 측정되는 유체 속도에서 계산할 수 있습니다. <p clas…

Discussion

정렬된 섬유를 갖는 COL1 매트릭스를 생성하기 위한 프로토콜은 자기 방법, 기계적 변형의 직접적인 적용, 및 미세유체 기술47을 사용하여 설명되었다. 미세유체 접근법은 생화학적 미세 환경을 정밀하게 제어할 수 있는 잘 정의된 흐름 및 수송 특성으로 인해 미세생리학적 시스템을 만드는 데 일반적으로 사용됩니다. 정렬된 COL1 섬유는 상처 치유, 종양 세포 침습 및 조직 발달과 …

Divulgations

The authors have nothing to disclose.

Acknowledgements

이 연구는 국립 보건원 (National Institute of Health)이 R21GM143658 상을 수상하고 국립 과학 재단 (National Science Foundation)이 보조금 번호 2150798로 부분적으로 지원했습니다. 내용은 전적으로 저자의 책임이며 반드시 자금 지원 기관의 공식 견해를 나타내는 것은 아닙니다.

Materials

(3-Aminopropyl)triethoxysilane, 99% (APTES) Sigma Aldrich 440140-100ML
20 Gauge IT Series Angled Dispensing Tip Jensen Global JG-20-1.0-90
3/16" dia. x 1/16" thick Nickel Plated Magnet KJ Magnetics D31
3M (TC) 12X12-6-467MP DigiKey 3M9726-ND
ACETONE ACS REAGENT ≥99.5% Signa Aldrich 179124-4L
BD-20AC LABORATORY CORONA TREATER Electro-Technic Products 12051A
Bovine Serum Albumin (BSA), Fraction V, 98%, Reagent Grade, Alfa Aesar VWR AAJ64100-09
Clear cast acrylic sheet McMaster-Carr 8560K181
Corning 100 mL Trypsin 10x, 2.5% Trypsin in HBSS [-] calcium, magnesium, phenol red, Porcine Parvovirus Tested VWR 45000-666
Countess II Automated Cell Counter Thermo Fisher Scientific AMQAX1000
CT-FIRE software LOCI – University of Wisconsin
EGM-2 Endothelial Cell Growth Medium-2 BulletKit, (CC-3156 & CC-4176), Lonza CC-3162, 500 mL Lonza CC-3162
Glutaraldehyde 50% in aqueous solution, Reagent Grade, Packaging=HDPE Bottle, Size=100 mL VWR VWRV0875-100ML
Graphtec CELITE-50 Graphtec CE LITE-50
HEPES (1 M) Thermo Fisher Scientific 15-630-080
High-Purity Silicone Rubber .010" Thick, 6" X 8" Sheet, 55A Durometer McMaster-Carr 87315K62
Human Umbilical Vein Endothelial cells Thermo Fisher Scientific C0035C
Invitrogen Trypan Blue Stain (0.4%) Thermo Fisher Scientific T10282
Isopropanol Fisher Scientific A4154
Laser cutter Full Spectrum 20×12 H-series
Microfluidics Syringe pump New Era Syringe Pumps NE-1002X
Microman E Single Channel Pipettor, Gilson, Model M1000E Gilson FD10006
Molecular Probes Alexa Fluor 488 Phalloidin Thermo Fisher Scientific A12379
Molecular Probes Hoechst 33342, Trihydrochloride, Trihydrate Thermo Fisher Scientific H3570
Nutragen Bovine Atelo Collagen Advanced BioMatrix 5010-50ML
Pbs (10x), pH 7.4 VWR 70011044.00
PBS pH 7.4 Thermo Fisher Scientific 10010049.00
Phosphate-buffered saline (PBS, 10x), with Triton X-100 Alfa Aesar J63521
Replacement carrier sheet for graphtec craft ROBO CC330L-20 USCUTTER GRPCARSHTN
Restek Norm-Ject Plastic Syringe 1 mL Luer Slip Restek 22766.00
Silicon wafer University wafer 452
Sodium Hydroxide, ACS, Packaging=Poly Bottle, Size=500 g VWR BDH9292-500G
Sylgard 184 VWR 102092-312
Thermo Scientific Pierce 20x PBS Tween 20 Thermo Fisher Scientific 28352.00

References

  1. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. Journal of Cell Science. 123 (24), 4195-4200 (2010).
  2. Bosman, F. T., Stamenkovic, I. Functional structure and composition of the extracellular matrix. The Journal of Pathology. 200 (4), 423-428 (2003).
  3. Cox, T. R., Erler, J. T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Disease Models & Mechanisms. 4 (2), 165-178 (2011).
  4. Cross, V. L., et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials. 31 (33), 8596-8607 (2010).
  5. Lu, P., Takai, K., Weaver, V. M., Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology. 3 (12), 005058 (2011).
  6. Piotrowski-Daspit, A. S., Nerger, B. A., Wolf, A. E., Sundaresan, S., Nelson, C. M. Dynamics of tissue-induced alignment of fibrous extracellular matrix. Biophysical Journal. 113 (3), 702-713 (2017).
  7. Provenzano, P. P., et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine. 4 (1), 38 (2006).
  8. Provenzano, P. P., et al. Collagen density promotes mammary tumor initiation and progression. BMC Medicine. 6 (1), 11 (2008).
  9. Szulczewski, J. M., et al. Directional cues in the tumor microenvironment due to cell contraction against aligned collagen fibers. Acta Biomaterialia. 129, 96-109 (2021).
  10. Aubin, H., et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials. 31 (27), 6941-6951 (2010).
  11. Gruschwitz, R., et al. Alignment and cell-matrix interactions of human corneal endothelial cells on nanostructured collagen type I matrices. Investigative Ophthalmology & Visual Science. 51 (12), 6303-6310 (2010).
  12. Wang, W. Y., et al. Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioengineering. 2 (4), 046107 (2018).
  13. Wang, W. Y., Lin, D., Jarman, E. H., Polacheck, W. J., Baker, B. M. Functional angiogenesis requires microenvironmental cues balancing endothelial cell migration and proliferation. Lab on a Chip. 20 (6), 1153-1166 (2020).
  14. Lanfer, B. The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials. 30 (30), 5950-5958 (2009).
  15. Brauer, E., et al. Collagen fibrils mechanically contribute to tissue contraction in an in vitro wound healing scenario. Advanced Science. 6 (9), 1801780 (2019).
  16. Ingber, D. E. From mechanobiology to developmentally inspired engineering. PhilosophicalTransactions of the Royal Society B: Biological Sciences. 373 (1759), 20170323 (2018).
  17. Wang, H., Abhilash, A. S., Chen, C. S., Wells, R. G., Shenoy, V. B. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophysical Journal. 107 (11), 2592-2603 (2014).
  18. Reinhart-King, C. A., Dembo, M., Hammer, D. A. Cell-cell mechanical communication through compliant substrates. Biophysical Journal. 95 (12), 6044-6051 (2008).
  19. Ahadian, S., et al. Organ-on-a-chip platforms: A convergence of advanced materials, cells, and microscale technologies. Advanced Healthcare Materials. 7 (2), 1700506 (2018).
  20. Hou, X., et al. Interplay between materials and microfluidics. Nature Reviews Materials. 2 (5), 17016 (2017).
  21. Abhyankar, V. V., et al. A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab on a Chip. 8 (9), 1507-1515 (2008).
  22. Abhyankar, V. V., Wu, M., Koh, C. Y., Hatch, A. V. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces. PLoS One. 11 (5), 0156341 (2016).
  23. Williams, M. J., et al. A low-cost, rapidly integrated debubbler (RID) module for microfluidic cell culture applications. Micromachines. 10 (6), 360 (2019).
  24. Hsu, M. C., et al. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications. Scientific Reports. 12, 10769 (2022).
  25. Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J., Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab on a Chip. 12 (12), 2156-2164 (2012).
  26. Abhyankar, V. V., Lokuta, M. A., Huttenlocher, A., Beebe, D. J. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab on a Chip. 6 (3), 389-393 (2006).
  27. Hasan, M. R., et al. One-step fabrication of flexible nanotextured PDMS as a substrate for selective cell capture. Biomedical Physics & Engineering Express. 4 (2), 025015 (2018).
  28. Meyvantsson, I., Beebe, D. J. Cell culture models in microfluidic systems. Annual Review of Physical Chemistry. 1, 423-449 (2008).
  29. Ma, Y., et al. Viscoelastic cell microenvironment: Hydrogel-based strategy for recapitulating dynamic ECM mechanics. Advanced Functional Materials. 31 (24), 2100848 (2021).
  30. Ma, Y., et al. 3D spatiotemporal mechanical microenvironment: A hydrogel-based platform for guiding stem cell fate. Advanced Materials. 30 (49), 1705911 (2018).
  31. Lee, P., Lin, R., Moon, J., Lee, L. P. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomedical Microdevices. 8 (1), 35-41 (2006).
  32. Del Amo, C., Borau, C., Movilla, N., Asín, J., García-Aznar, J. M. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Integrative Biology. 9 (4), 339-349 (2017).
  33. Shi, N., et al. A 3D, magnetically actuated, aligned collagen fiber hydrogel platform recapitulates physical microenvironment of myoblasts for enhancing myogenesis. Small Methods. 5 (6), 2100276 (2021).
  34. Lanfer, B., et al. Aligned fibrillar collagen matrices obtained by shear flow deposition. Biomaterials. 29 (28), 3888-3895 (2008).
  35. Saeidi, N., Sander, E. A., Ruberti, J. W. Dynamic shear-influenced collagen self-assembly. Biomaterials. 30 (34), 6581-6592 (2009).
  36. Saeidi, N., Sander, E. A., Zareian, R., Ruberti, J. W. Production of highly aligned collagen lamellae by combining shear force and thin film confinement. Acta Biomaterialia. 7 (6), 2437-2447 (2011).
  37. Ahmed, A., et al. Microengineered 3D collagen gels with independently tunable fiber anisotropy and directionality. Advanced Materials Technologies. 6 (4), 2001186 (2021).
  38. Ahmed, A., et al. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication. 14 (3), 035019 (2022).
  39. Mansouri, M., et al. The modular µSiM reconfigured: Integration of microfluidic capabilities to study in vitro barrier tissue models under flow. Advanced Healthcare Materials. , (2022).
  40. Paten, J. A., et al. Flow-induced crystallization of collagen: a potentially critical mechanism in early tissue formation. ACS Nano. 10 (5), 5027-5040 (2016).
  41. Liu, Y., Eliceiri, K. W. Quantifying fibrillar collagen organization with curvelet transform-based tools. Journal of Visualized Experiments. (165), e61931 (2020).
  42. Bredfeldt, J. S., et al. Automated quantification of aligned collagen for human breast carcinoma prognosis. Journal of Pathology Informatics. 5 (1), 28 (2014).
  43. Bredfeldt, J. S., et al. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. Journal of Biomedical Optics. 19 (1), 016007 (2014).
  44. Carey, S. P., et al. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integrative Biology. 8 (8), 821-835 (2016).
  45. Carey, S. P., Kraning-Rush, C. M., Williams, R. M., Reinhart-King, C. A. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials. 33 (16), 4157-4165 (2012).
  46. Ahmed, A., et al. Engineering fiber anisotropy within natural collagen hydrogels. AmericanJournal of Physiology-Cell Physiology. 320 (6), 1112-1124 (2021).
  47. Mohammadi, H., Janmey, P. A., McCulloch, C. A. Lateral boundary mechanosensing by adherent cells in a collagen gel system. Biomaterials. 35 (4), 1138-1149 (2014).
check_url/fr/64457?article_type=t

Play Video

Citer Cet Article
Ahmed, A., Joshi, I. M., Goulet, M. R., Vidas, J. A., Byerley, A. M., Mansouri, M., Day, S. W., Abhyankar, V. V. Microengineering 3D Collagen Hydrogels with Long-Range Fiber Alignment. J. Vis. Exp. (187), e64457, doi:10.3791/64457 (2022).

View Video