Summary

用于甲状腺手术术前评估的个性化3D打印模型

Published: February 17, 2023
doi:

Summary

本文提出了一种建立个性化3D打印模型用于甲状腺手术术前评估的新方法。有利于术前讨论,降低甲状腺手术难度。

Abstract

甲状腺癌手术区域的解剖结构很复杂。术前全面仔细地评估肿瘤位置及其与囊、气管、食道、神经和血管的关系非常重要。本文介绍了一种基于计算机断层扫描(CT)DICOM图像的创新3D打印模型建立方法。我们针对每位需要甲状腺手术的患者建立了个性化的颈椎甲状腺手术领域3D打印模型,帮助临床医生评估手术的关键点和难点,选择关键部位的操作方法作为依据。结果表明,该模型有利于术前讨论和手术策略的制定。特别是,由于甲状腺手术视野中喉返神经和甲状旁腺位置的清晰显示,可以避免在手术过程中对它们的伤害,降低甲状腺手术的难度,并降低术后甲状旁腺功能减退症和喉返神经损伤相关并发症的发生率。此外,这种3D打印模型非常直观,有助于患者在手术前签署知情同意书。

Introduction

甲状腺结节是最常见的内分泌疾病之一,其中甲状腺癌占14%-21%1。甲状腺癌的首选治疗方法是手术。但由于甲状腺位于颈前部区域,手术区有靠近甲状腺的重要组织和器官,如甲状旁腺、气管、食道、颈大血管和神经23等,使得手术难度较大,风险较大。最常见的手术并发症是由甲状旁腺功能损伤引起的甲状旁腺功能下降或喉返神经损伤引起的错误切除和声音嘶哑4。减少上述手术并发症一直是外科医生的目标。甲状腺手术前最常见的成像方法是超声成像,尽管其对甲状旁腺和神经的显示非常有限5。此外,甲状旁腺和喉返神经在甲状腺手术区的位置变化很大,阻碍了识别67。如果在手术过程中能够通过模型实时向外科医生清晰显示每个患者的解剖位置,将降低甲状腺手术的操作风险,降低并发症的发生率,提高甲状腺手术的效率。

此外,在手术前向患者彻底解释手术过程也具有挑战性。一些没有经验的外科医生发现很难向患者解释和传达手术的确切细节,特别是因为甲状腺及其周围结构的复杂性。每个患者都有自己独特的解剖结构和个人需求8.因此,基于患者真实解剖结构的个性化3D甲状腺模型可以有效地帮助患者和临床医生。目前,市场上的大多数产品都是基于平面图批量生产的。通过利用3D打印技术生成反映每个患者个人医疗需求的特定于患者的模型,该模型可用于评估甲状腺癌患者的实际情况,并帮助外科医生更好地与患者沟通疾病的性质。

3D打印(或增材制造)是由计算机辅助设计模型或数字3D模型9构建的三维结构。它已被用于许多医疗应用,例如医疗设备,解剖模型和药物制剂10。与传统成像相比,3D打印模型更清晰可见。因此,3D打印越来越多地用于现代外科手术。常用的3D打印技术包括基于还原聚合的打印,基于粉末的打印,基于喷墨的打印和基于挤出的打印11。在基于还原聚合的印刷中,特定波长的光被照射到光固化树脂桶上,该树脂一次一层局部固化树脂。具有节省材料、打印速度快等优点。粉末印刷依靠局部加热将粉末材料融合为更致密的结构,但也导致印刷时间和成本的显着增加,目前使用有限12。基于喷墨的印刷使用逐层工艺将液滴精确喷涂到承印物上。该技术最为成熟,具有材料兼容性高、成本可控、打印时间快等优点13.基于挤出的印刷通过喷嘴挤出溶液和悬浮液等材料。该技术利用细胞,因此具有最高的软组织模拟能力。由于较高的成本和生物亲和力,它主要用于组织工程领域,较少用于外科器官模型14

因此,我们根据甲状腺及其周围结构的复杂性以及手术时间表选择了“白色喷射工艺”打印技术。该技术结合了基于还原聚合的打印和基于喷墨的打印的优点,并提供高精度,快速和低成本,使其非常适合甲状腺手术。该协议的目的是制作3D打印的甲状腺癌模型,通过提供有关患者解剖结构和变异的充分信息来改善患者的预后,并更好地告知医生和患者与手术过程相关的所有情况。

Protocol

这项研究不需要获得患者的批准或任何形式的同意即可使用和发布他们的数据,因为本研究和视频中的所有数据和信息都是匿名的。 1. 图像数据的收集 通过增强型计算机断层扫描(CT)扫描患者的甲状腺,以获得DICOM格式的图像数据。确保此过程在操作前 1 周内完成,并控制切片厚度,使其为 ≤1 毫米。 2. DICOM数据的处理</str…

Representative Results

本文提出了一种构建患者甲状腺个性化3D打印模型的方案。图1显示了为患者甲状腺建立个性化3D打印模型的流程 图 。 图2 显示了用于患者甲状腺的个性化3D打印模型打印设备。 图3 显示了为甲状腺患者建立个性化3D打印模型的软件界面。视频中详细介绍了显示的界面。 图4 显示了患者甲状腺个性化3D打印模型…

Discussion

对于大多数接受甲状腺手术的患者来说,超声可能是唯一的术前成像程序15。然而,少数分化良好的病例可能患有晚期疾病,这些疾病侵入周围组织或器官并阻碍手术16。这种模式可能更适合远晚期甲状腺癌患者。当疾病进展时,额外的CT扫描有助于进一步诊断。该模型基于CT扫描,与目前可访问的批量生产的甲状腺模型相比,CT扫描提供了更多的解剖学和形态学…

Divulgations

The authors have nothing to disclose.

Acknowledgements

本研究得到了四川省卫生健康委员会(批准号:20PJ061)、国家自然科学基金(批准号:32101188)和四川省科技厅一般项目(批准号:2021YFS0102)的支持。

Materials

3D color printer Zhuhai Sina 3D Technology Co J300PLUS Function support: automatic optimized placement, automatic model typesetting, automatic generation support, real-time layered edge cutting and printing, slice export, custom color thickness, custom placement / scaling, man hour evaluation, material consumption evaluation, print status monitoring, material remaining display, changing materials and colors, managing work queues, full / semi enclosed printing, automatic detection of model interference, layer preview, automatic pause of ink shortage, power failure to resume printing Automatic cleaning nozzle, automatic channel adaptation, ink change, automatic cleaning pipeline, follow-up laying. Range of optional materials: RGD series transparent molding materials, RGD series opaque molding materials, FLX series soft molding materials, ABS like series molding materials, high temperature resistant molding materials, Med series molding materials (first-class medical record certification), ordinary supporting materials, water-soluble supporting materials.
Mimics 21.0 software  Materialise, Belgium DICOM data processing

References

  1. Haugen, B. R., et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26 (1), 1-133 (2016).
  2. Kim, Y. S., et al. The role of adjuvant external beam radiation therapy for papillary thyroid carcinoma invading the trachea. Radiation Oncology Journal. 35 (2), 112-120 (2017).
  3. Wang, L. Y., et al. Operative management of locally advanced, differentiated thyroid cancer. Surgery. 160 (3), 738-746 (2016).
  4. Poppe, K. MANAGEMENT OF ENDOCRINE DISEASE: Thyroid and female infertility: more questions than answers. European Journal of Endocrinology. 184 (4), 123-135 (2021).
  5. Alexander, L. F., Patel, N. J., Caserta, M. P., Robbin, M. L. Thyroid ultrasound: diffuse and nodular disease. Radiologic Clinics of North America. 58 (6), 1041-1057 (2020).
  6. Chambers, K. J., et al. Respiratory variation predicts optimal endotracheal tube placement for intra-operative nerve monitoring in thyroid and parathyroid surgery. World Journal of Surgery. 39 (2), 393-399 (2015).
  7. Ling, X. Y., Smoll, N. R. A systematic review of variations of the recurrent laryngeal nerve. Clinical Anatomy. 29 (1), 104-110 (2016).
  8. Qiu, K., Haghiashtiani, G., McAlpine, M. C. 3D printed organ models for surgical applications. Annual Review of Analytical Chemistry. 11 (1), 287-306 (2018).
  9. Tejo-Otero, A., Buj-Corral, I., Fenollosa-Artés, F. 3D printing in medicine for preoperative surgical planning: a review. Annals of Biomedical Engineering. 48 (2), 536-555 (2020).
  10. Jang, J., Yi, H. G., Cho, D. W. 3D printed tissue models: present and future. ACS Biomaterials Science & Engineering. 2 (10), 1722-1731 (2016).
  11. Liaw, C. Y., Guvendiren, M. Current and emerging applications of 3D printing in medicine. Biofabrication. 9 (2), 024102 (2017).
  12. Arifin, N., Sudin, I., Ngadiman, N. H. A., Ishak, M. S. A. A comprehensive review of biopolymer fabrication in additive manufacturing processing for 3D-tissue-engineering scaffolds. Polymers. 14 (10), 2119 (2022).
  13. Li, X., et al. Inkjet bioprinting of biomaterials. Chemical Reviews. 120 (19), 10793-10833 (2020).
  14. Mironov, V., Kasyanov, V., Markwald, R. R. Organ printing: from bioprinter to organ biofabrication line. Current Opinion in Biotechnology. 22 (5), 667-673 (2011).
  15. Niedziela, M. Thyroid nodules. Best Practice & Research. Clinical Endocrinology & Metabolism. 28 (2), 245-277 (2014).
  16. Hong, D., et al. Usefulness of a 3D-printed thyroid cancer phantom for clinician to patient communication. World Journal of Surgery. 44 (3), 788-794 (2020).
  17. Doucet, G. Modelling and manufacturing of a 3D printed trachea for cricothyroidotomy simulation. Cureus. 9 (8), 1575 (2017).
  18. Lim, P. K., et al. Use of 3D printed models in resident education for the classification of acetabulum fractures. Journal of Surgical Education. 75 (6), 1679-1684 (2018).
  19. Al Ali, A. B., Griffin, M. F., Calonge, W. M., Butler, P. E. Evaluating the use of cleft lip and palate 3D-printed models as a teaching aid. Journal of Surgical Education. 75 (1), 200-208 (2018).
  20. Chan, H. H. L., et al. 3D rapid prototyping for otolaryngology-head and neck surgery: applications in image-guidance, surgical simulation and patient-specific modeling. PLoS One. 10 (9), 0136370 (2015).
  21. Craft, D. F., Howell, R. M. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. Journal of Applied Clinical Medical Physics. 18 (5), 285-292 (2017).
  22. Hong, D., et al. Development of a personalized and realistic educational thyroid cancer phantom based on CT images: An evaluation of accuracy between three different 3D printers. Computers in Biology and Medicine. 113, 103393 (2019).
  23. Hazelaar, C., et al. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes. Medical Physics. 45 (1), 92-100 (2018).
  24. Tack, P., Victor, J., Gemmel, P., Annemans, L. 3D-printing techniques in a medical setting: a systematic literature review. Biomedical Engineering Online. 15 (1), 115 (2016).
  25. Bernhard, J. C., et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World Journal of Urology. 34 (3), 337-345 (2016).
check_url/fr/64508?article_type=t

Play Video

Citer Cet Article
Li, P., Chen, Y., Zhao, W., Huang, Z., Zhu, J. A Personalized 3D-Printed Model for Preoperative Evaluation in Thyroid Surgery. J. Vis. Exp. (192), e64508, doi:10.3791/64508 (2023).

View Video