Summary

间变性甲状腺癌的自发性鼠模型

Published: February 03, 2023
doi:

Summary

在这里,我们提出了一种通过自发基因工程小鼠模型获得鼠ATC肿瘤的标准管道。此外,我们呈现有关原发性和转移性病变的肿瘤动力学和病理信息。该模型将帮助研究人员了解肿瘤发生并促进药物发现。

Abstract

间变性甲状腺癌(ATC)是一种罕见但致命的恶性肿瘤,预后令人沮丧。迫切需要对ATC的致癌作用和发展以及治疗方法进行更深入的研究,因为ATC患者的标准治疗基本上已经耗尽。然而,低患病率阻碍了彻底的临床研究和组织样本的收集,因此在创造有效治疗方法方面进展甚微。我们使用基因工程在C57BL / 6背景中创建条件诱导的ATC小鼠模型(mATC)。ATC小鼠模型通过TPO-cre/ERT2进行基因分型;布拉夫CA/wt;Trp53ex2-10 / ex2-10并通过腹腔注射他莫昔芬诱导。使用小鼠模型,我们研究了肿瘤动力学(诱导4个月后肿瘤大小范围为12.4mm 2至32.5mm2),生存(中位生存期为130天)和转移(91.6%的小鼠发生肺转移)曲线和病理特征(以Cd8,Foxp3,F4 / 80,Cd206,Ki67和Caspase-3免疫组织化学染色为特征)。结果表明,自发性mATC具有与人ATC肿瘤高度相似的肿瘤动力学和免疫微环境。综上所述,mATC模型具有较高的病理生理特征相似性和统一的基因型,在一定程度上解决了临床ATC组织和样本异质性的不足。因此,它将有助于ATC的机制和转化研究,并为研究ATC的小分子药物和免疫治疗剂的治疗潜力提供途径。

Introduction

甲状腺癌是最常见的内分泌恶性肿瘤之一1,起源于甲状腺上皮。近年来,全球甲状腺癌的发病率迅速上升2。甲状腺癌根据肿瘤细胞分化程度可分为不同的类型。根据临床行为和组织学,甲状腺癌分为高分化癌,包括甲状腺状癌(PTC)和滤泡性甲状腺癌(FTC)、低分化癌(PDTC)和未分化或间变性甲状腺癌(ATC)3。PTC是一种行为温和、预后较好的常见类型4,而PTC是一种罕见且高度侵袭性的恶性肿瘤,占所有甲状腺肿瘤的2%至3%5。虽然ATC很少见,但它导致大约50%的甲状腺癌相关死亡,生存率低(6-8个月)6,7。超过 50% 的 ATC 病例被诊断为肺转移8.除了ATC的侵袭性外,临床上还开发了有限的有效治疗方法。因此,ATC患者的预后为9,10,11。这表明迫切需要对ATC发展和治疗的分子机制进行进一步深入研究。

ATC的肿瘤发生是一个动态的去分化过程。临床研究每个阶段收集人类肿瘤样本的困难阻碍了对从高分化到未分化癌的发展机制的理解。相比之下,小鼠ATC模型(mATC)的使用有利于在整个肿瘤发生过程中收集mATC样本。因此,通过分析动态去分化过程,我们可以更好地了解肿瘤形成的机制。此外,临床ATC样本的异质性也导致了分子机制理解的困难。然而,小鼠具有相同的遗传背景,并保持在相似的生活环境中,确保每个肿瘤的一致性。这有助于探索ATC发展的普遍作用12,13,14。此外,mATC是一种原位肿瘤模型,可以恢复解剖位置和组织特异性微环境的影响。因此,与常用的免疫缺陷小鼠相比,mATC是一种自发的小鼠模型,具有完整的免疫系统和免疫微环境。

因此,我们用C57BL / 6菌株构建了条件诱导的mATC,这是一种能够再现去分化甲状腺癌病理特征的小鼠模型。基于该模型,本文简要概述了mATC的分子基础、构建思路、病理特征和应用。此外,我们观察并报告了mATC的肿瘤生长,存活时间,转移和病理特征。我们相信这将是一个信息概述,以帮助其他研究人员更轻松地使用该模型。

我们构建了一个条件诱导mATC模型,如McFadden15首次报道的那样;最初,我们构建了小鼠:TPO-cre / ERT2,Braf flox / wt和Trp53flox / wt具体而言,TPO-cre / ERT2小鼠包括人甲状腺过氧化物酶(TPO)启动子(甲状腺特异性启动子),驱动cre-ERT2融合基因(融合到人雌激素受体配体结合域的cre重组酶)的表达。Cre-ERT2通常局限于细胞质中,只有在暴露于他莫昔芬时才进入细胞核,他莫昔芬诱导cre发挥重组酶活性。当小鼠与携带loxP侧翼序列的小鼠杂交时,他莫昔芬诱导后,cre介导的重组删除甲状腺细胞中的絮状序列,以达到敲除或敲除特定基因的目的。

此外,Brafflox/wt小鼠是基于cre-loxP系统的人类Braf的敲入等位基因。Brafflox/wt 鼠转录本由内源性外显子 1-14 和 loxP 侧翼人外显子 15-18 编码。在Cre介导的絮状区域切除后,突变外显子15(用与人类癌症中组成活性Braf V600E连接的V600E氨基酸取代物修饰)和内源性外显子16-18用于生成转录本。此外,Trp53 flox/wt小鼠是人类Trp53的敲除等位基因,并且在Trp53的外显子2-10侧翼具有loxP位点。当与具有cre重组酶的小鼠杂交时,cre介导的重组删除絮状序列以敲除Trp53。然后,将TPO-cre/ERT2、Braf flox/w和Trp53flox/wt小鼠杂交以获得TB(TPO-cre/ERT2;布拉夫弗洛克斯/重量)小鼠和TBP(TPO-cre/ERT2;布拉夫絮絮/重量;Trp53flox/wt)小鼠,可用于产生PTC和ATC。大约8周后,通过腹膜内(ip)施用溶解在玉米油中的150mg / kg他莫昔芬诱导小鼠两次给药。肿瘤生长可以通过高频超声检查监测(超声检查的第一个时间点记录在第0天)。引入他莫昔芬后 40 天进行初始超声检查。

Protocol

此处描述的动物程序是在四川大学华西医院动物伦理委员会(中国四川省成都)的批准下进行的。 1.诱导TBP小鼠 鉴定小鼠基因型在大约3周时,将雌性小鼠与雄性小鼠分开。同时,使用耳标夹固定耳标。将耳标放在耳朵的下半部分和中间三分之一处,确保避开毛细血管浓度最高的区域。 轻柔但安全地约束小鼠。牢牢抓住鼠标尾巴的底部。将?…

Representative Results

我们诱导mATC研究肿瘤生长,小鼠存活时间和病理特征。诱导后立即处死小鼠,一旦发现以下情况之一,就收集样品(甲状腺,肺和肝脏):1)肿瘤压迫引起的呼吸窘迫;2)食欲下降,发声异常;3)异常嗜睡;4)体重减轻20%以上。在采样过程中,我们发现所有小鼠(12/12)在诱导后成功形成肿瘤。我们记录了小鼠的存活时间、肿瘤特征/大小和转移病变。 大体上观察到以下情况:…

Discussion

甲状腺肿瘤清扫方案中的关键步骤
在解剖过程中,需要正确了解甲状腺的解剖位置。甲状腺是位于下颌下腺背侧靠近甲状腺软骨和气管的蝴蝶状腺体。在手术过程中,小心翼翼地避免切断颈部两侧的血动脉。

mATC品种的修改和故障排除
ATC是一种罕见且高度侵袭性的恶性肿瘤。mATC和ATC患者的临床特征有一定的相似之处。具体而言,mATC死亡的主要?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家重点研究发展计划(2021YFA1301203)的支持;国家自然科学基金(82103031,82103918,81973408,82272933);四川大学华西医院临床研究孵化项目(22HXFH019);成都市科技局国际合作项目(2020-GH02-00017-HZ);四川省自然科学基金, 2022NSFSC1314;“四川大学华西医院优秀学科1.3.5项目”(ZYJC18035、ZYJC18025、ZYYC20003、ZYJC18003);四川省科技计划(2023YFS0098)。

Materials

100x Citrate antigen retrieval solution (PH 6.0) MXB Cat# MVS-0101
50x EDTA antigen retrieval solution(pH 9.5) ZSGB-GIO Cat# ZLI-9071
Brafflox/wt mice Collaboration with Institute of Life Science, eBond Pharmaceutical Technology Ltd, Chengdu, China
Caspase-3 Beyotime Cat# AC033
CD8 Cell Signaling Technology Cat# 98941; RRID:AB_2756376
CD206 Cell Signaling Technology Cat# 24595; RRID:AB_2892682
Chamber for anesthesia induction RWDlifescience
Enhanced DAB chromogenic kit MXB Cat# DAB-2031
Eosin staining solution ZSGB-GIO Cat# ZLI-9613
F4/80 Abcam Cat# 100790; RRID:AB_10675322
Foxp3 Cell Signaling Technology Cat# 12653; RRID:AB_2797979
Fully enclosed tissue dehydrator Leica Biosystems ASP300S
Hematoxylin staining solution ZSGB-GIO Cat# ZLI-9610
HistoCore Arcadia fully automatic tissue embedding machine Leica Biosystems
Ki67 Beyotime Cat# AF1738
Rotating Slicer RWDlifescience  Minux S700
SPlink detection kits (Biotin-Streptavidin HRP Detection Systems) ZSGB-GIO Cat# SP-9001
TPO-cre/ERT2 mice Collaboration with Institute of Life Science, eBond Pharmaceutical Technology Ltd, Chengdu, China
Trp53flox/wt mice Collaboration with Institute of Life Science, eBond Pharmaceutical Technology Ltd, Chengdu, China
Ultrasonic cell crusher Ningbo Xinyi Ultrasound Equipment Co., Ltd JY92-IIN
Ultrasound gel Keppler KL-250
Ultrasound system VisualSonics Vevo 3100

References

  1. Siegel, R. L., Miller, K. D., Jemal, A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians. 69 (1), 7-34 (2019).
  2. Parenti, R., Salvatorelli, L., Magro, G. Anaplastic thyroid carcinoma: Current treatments and potential new therapeutic options with emphasis on TfR1/CD71. International Journal of Endocrinology. 2014, 685396 (2014).
  3. Baldini, E., et al. In vitro and in vivo effects of the urokinase plasminogen activator inhibitor WX-340 on anaplastic thyroid cancer cell lines. International Journal of Molecular Sciences. 23 (7), 3724 (2022).
  4. Haugen, B. R. American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: what is new and what has changed. Cancer. 123 (3), 372-381 (2015).
  5. O’Neill, J. P., Shaha, A. R. Anaplastic thyroid cancer. Oral Oncology. 49 (7), 702-706 (2013).
  6. Simoes-Pereira, J., Capitao, R., Limbert, E., Leite, V. Anaplastic thyroid cancer: Clinical picture of the last two decades at a single oncology referral centre and novel therapeutic options. Cancers. 11 (8), 1188 (2019).
  7. Fagin, J. A., Wells, S. A. Biologic and clinical perspectives on thyroid cancer. The New England Journal of Medicine. 375 (11), 1054-1067 (2016).
  8. Neff, R. L., Farrar, W. B., Kloos, R. T., Burman, K. D. Anaplastic thyroid cancer. Endocrinology and Metabolism Clinics of North America. 37 (2), 525-538 (2008).
  9. Lareau, C. A., et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nature Biotechnology. 37 (8), 916-924 (2019).
  10. Guo, H., et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Research. 23 (12), 2126-2135 (2013).
  11. Mooijman, D., Dey, S. S., Boisset, J. -. C., Crosetto, N., van Oudenaarden, A. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nature Biotechnology. 34 (8), 852-856 (2016).
  12. Smallridge, R. C., Marlow, L. A., Copland, J. A. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocrine-Related Cancer. 16 (1), 17-44 (2009).
  13. Charles, R. -. P. Overview of genetically engineered mouse models of papillary and anaplastic thyroid cancers: enabling translational biology for patient care improvement. Current Protocols in Pharmacology. 69, 1-14 (2015).
  14. Tuttle, R. M., Haugen, B., Perrier, N. D. Updated American joint committee on cancer/tumor-nodemetastasis staging system for differentiated and anaplastic thyroid cancer (8th Edition): What changed and why. Thyroid. 27 (6), 751-756 (2017).
  15. McFadden, D. G., et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Protocols of the National Academy of Sciences. 111 (16), 1600-1609 (2014).
  16. Gunda, V., et al. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer. British Journal of Cancer. 119 (10), 1223-1232 (2018).
  17. He, Y., et al. High-resolution ultrasonography for the analysis of orthotopic ATC tumors in a genetically engineered mouse model. Journal of Visualized Experiments. (188), e64615 (2022).
  18. Zhang, L., et al. Novel recurrent altered genes in Chinese patients with anaplastic thyroid cancer. The Journal of Clinical Endocrinology and Metabolism. 106 (4), 988-998 (2021).
  19. Luo, H., et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nature Communications. 13 (1), 6619 (2022).
  20. Luo, H., et al. Characterizing dedifferentiation of thyroid cancer by integrated analysis. Science Advances. 7 (31), (2021).
  21. Knostman, K. A. B., Jhiang, S. M., Capen, C. C. Genetic alterations in thyroid cancer: the role of mouse models. Veterinary Pathology. 44 (1), 1-14 (2007).
  22. Kim, C. S., Zhu, X. Lessons from mouse models of thyroid cancer. Thyroid. 19 (12), 1317-1331 (2009).
  23. Champa, D., Di Cristofano, A. Modeling anaplastic thyroid carcinoma in the mouse. Hormones and Cancer. 6 (1), 37-44 (2015).
  24. Cabanillas, M. E., Ryder, M., Jimenez, C. Targeted therapy for advanced thyroid cancer: kinase inhibitors and beyond. Endocrine Reviews. 40 (6), 1573-1604 (2019).
  25. Ljubas, J., Ovesen, T., Rusan, M. A systematic review of phase II targeted therapy clinical trials in anaplastic thyroid cancer. Cancers. 11 (7), 943 (2019).
  26. Huang, N. -. S., et al. An update of the appropriate treatment strategies in anaplastic thyroid cancer: a population-based study of 735 patients. International Journal of Endocrinology. 2019, 8428547 (2019).
  27. Subbiah, V., et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. Journal of Clinical Oncology. 36 (1), 7-13 (2018).
  28. Baldini, E., et al. Effects of selective inhibitors of Aurora kinases on anaplastic thyroid carcinoma cell lines. Endocrine-Related Cancer. 21 (5), 797-811 (2014).
check_url/fr/64607?article_type=t

Play Video

Citer Cet Article
Yan, H., Ma, Y., Zhou, X., He, Y., Liu, Y., Caulin, C., Wang, L., Xu, H., Luo, H. Spontaneous Murine Model of Anaplastic Thyroid Cancer. J. Vis. Exp. (192), e64607, doi:10.3791/64607 (2023).

View Video