Summary

离体 基于OCT的人供体眼睛多模态成像用于研究年龄相关性黄斑变性

Published: May 26, 2023
doi:

Summary

实验室检测可以利用基于纵向光学相干断层扫描 (OCT) 的年龄相关性黄斑变性 (AMD) 多模态成像的预后价值。在组织切片之前,使用OCT,彩色,近红外反射扫描激光检眼镜和两个激发波长的自发荧光对有和没有AMD的人类供体眼睛进行成像。

Abstract

从基于光学相干断层扫描(OCT)的多模态(MMI)临床成像中学习的年龄相关性黄斑变性(AMD)的进展序列可以为实验室结果增加预后价值。在这项工作中,在视网膜组织切片之前将离体OCT和MMI应用于人类供眼睛。眼睛是从年龄≥80岁的非糖尿病白人捐赠者那里恢复的,死亡保存时间(DtoP)为≤6小时。在现场回收地球仪,用18毫米环钻刻痕以促进角膜去除,并浸入缓冲的4%多聚甲醛中。使用解剖镜和单反相机在三种放大倍率下使用反式、落射和闪光灯照明去除前节后获取彩色眼底图像。将地球仪放置在带有60屈光度镜片的定制设计腔室内的缓冲器中。它们以光谱域OCT(30°黄斑立方体,30μm间距,平均= 25),近红外反射率,488 nm自发荧光和787 nm自发荧光成像。AMD眼睛显示视网膜色素上皮(RPE)发生变化,伴有玻璃膜疣或视网膜下玻璃疣沉积物(SDD),伴或不伴新生血管形成,并且没有其他原因的证据。在2016年6月至2017年9月期间,恢复了94只右眼和90只左眼(DtoP:3.9±1.0小时)。在184只眼睛中,40.2%患有AMD,包括早期中级(22.8%),萎缩性(7.6%)和新生血管性(9.8%)AMD,39.7%患有无明显黄斑。使用OCT鉴定玻璃膜疣,SDD,超反射病灶,萎缩和纤维血管瘢痕。 伪影包括组织混浊,脱离(杆菌,视网膜,RPE,脉络膜),中央凹囊性变化,起伏的RPE和机械损伤。为了指导冷冻切片,使用OCT体积来查找中央凹和视神经头标志和特定病理。通过选择眼动追踪的参考功能,将离体体积与体内体积进行登记。体内可见病理的离体可见度取决于保存质量。在16个月内,使用临床MMI方法恢复和分期了75只处于AMD各个阶段的快速DtoP供体眼睛。

Introduction

在光学相干断层扫描(OCT)的指导下,通过抗VEGF治疗管理新生血管年龄相关性黄斑变性(AMD)已有15年的经验,为这种普遍的视力丧失原因的进展顺序和微结构提供了新的见解。一个关键的认知是,AMD是一种三维疾病,涉及神经感觉视网膜,视网膜色素上皮(RPE)和脉络膜。由于试验患者和接受治疗的临床患者的眼睛的OCT成像,现在认识到了几十年来临床标准彩色眼底摄影所看到的病理特征。这些包括视网膜内新生血管形成(3 型黄斑新生血管形成1,以前称为血管瘤增生)、视网膜下玻璃疣沉积物 (SDD,也称为网状假玻璃膜疣)2、RPE 命运的多条途径34 和萎缩中的强烈胶质细胞 Müller 细胞56

缺乏黄斑(细胞和动物)的模型系统重建了这种复杂疾病的一些切片789。减轻AMD负担的进一步成功可能来自发现和探索人眼中的原发性病理学,了解黄斑的独特细胞组成,然后转化为模型系统。本报告描述了学术研究实验室和眼库之间三十年的合作。本文描述的组织表征方法有两个目标:1)通过显微镜证明眼底外观和成像信号源的基础来告知不断发展的诊断技术,以及2)对AMD标本进行分类,用于靶向(免疫组织化学)和非靶向分子发现技术(成像质谱,IMS和空间转录组学),以保留仅锥形中央凹和富含杆的副中央凹和周中心凹。这些研究可以加速向临床OCT的转化,通过眼动追踪可以进行进展序列和纵向随访。这项技术旨在监测治疗效果,使用视网膜血管记录从一次诊所访问到下一次诊所访问的扫描。将眼动OCT与通过破坏性技术获得的实验室结果联系起来可以为分子发现提供新的预后价值水平。

1993年,研究实验室在胶片10上拍摄了死后眼底的彩色照片。这项工作的灵感来自Foos及其同事11,12,13对人类周边视网膜的出色光学显微镜和组织学,以及Sarks等人的广泛AMD临床病理学相关性1415从2009年开始,采用锚定在光谱域OCT上的离体多模态成像(MMI)。这种转变的灵感来自其他人的类似努力1617,特别是认识到萨克斯描述的许多超微结构在诊所1819中都是三维的。目标是在合理的时间范围内获得附着黄斑的眼睛,以便对视网膜、RPE 和脉络膜中的细胞水平表型进行有力的研究。目的是超越“每只眼睛”的统计数据到“每种病变类型”,这一标准受到心血管疾病2021的“脆弱斑块”概念的影响。

本报告中的方案反映了近400对捐赠者眼睛在几个流中加入的经验。2011-2014 年,创建了 AMD 组织病理学的 MACULA 项目网站,其中包括来自 142 个存档标本的层厚度和注释。这些眼睛从1996年至2012年保存在戊二醛 – 多聚甲醛固定剂中,用于高分辨率环氧树脂组织学和电子显微镜。所有眼底在收到时都以彩色照片拍摄,并在组织学之前由OCT重新成像。最初设计用于视神经研究的眼支架22用于容纳以中央凹为中心的8毫米直径全层组织冲头。OCT B扫描通过中央凹中心和2毫米的部位,对应于同一水平的组织学,上传到网站,并附有彩色眼底照片。OCT 平面的选择取决于中央凹23 下 AMD 病理学的突出程度以及 SDD 在优于中央凹2425 的杆富区中的突出性。

从2013年开始,在生命期间用OCT锚定MMI成像的眼睛可用于直接的临床病理相关性。大多数(10名捐赠者中的7名)涉及视网膜转诊诊所的患者(作者:K.B.F.),该诊所为有兴趣在死后捐献眼睛用于研究目的的患者提供了一个高级指导登记处。眼睛由当地眼库回收和保存,转移到实验室,并以与MACULA项目相同的方式制备眼睛。在实验室中无缝读取生前临床OCT卷,从而将生活中看到的病理特征与显微镜下看到的特征对齐26

从2014年开始,前瞻性眼科采集开始于在没有临床病史的供体眼睛中筛查AMD,但在规定的时间限制(6小时)内保存。为此,对眼睛支架进行了修改,以适应整个地球仪。这减少了以前使用的 8 mm 冲头切割边缘周围脱落的机会。将眼睛保存在4%缓冲的多聚甲醛中用于免疫组织化学,并在第二天转移到1%用于长期储存。在 2016-2017 年(大流行前),来自 90 名捐赠者的 184 只眼睛被收回。此报告中的统计信息和图像是从该系列生成的。在大流行时期(2020 年封锁和后果),转录组学和 IMS 合作的预期收集继续以较低的速度进行,基本上使用 2014 年的方法。

其他供体眼部评估方法也可用。明尼苏达分级系统(MGS)2728基于AREDS临床系统,用于彩色眼底摄影29。这种方法的局限性包括将萎缩性和新生血管性AMD合并为“晚期AMD”的一个阶段。此外,MGS需要在RPE脉络膜的照片记录之前去除神经感觉视网膜。该步骤在不同程度上将SDD移位3031并消除了视网膜外层及其支持系统的空间对应关系。因此,将代谢需求和视网膜信号传导与 RPE 脉络膜病理学联系起来的努力可能会受到阻碍。犹他系统使用离体彩色摄影和OCT实施MMI,将要解剖的眼睛分类为RNA和蛋白质提取区域32。虽然比整个眼罩摘除术更可取,但 AMD 进展风险最高的 3 mm 直径区域3334 仅占 6 mm 直径中央凹中心冲头的 25%。因此,能够定位中央凹发现的技术,例如用于免疫组织化学的连续切片,是有利的。

Protocol

阿拉巴马大学伯明翰分校的机构审查委员会批准了实验室研究,这些研究符合良好实验室规范和生物安全2/2+级。所有美国眼库均符合 2006 年统一解剖礼品法案和美国食品和药物管理局。大多数美国眼库,包括Advance Sight Network,都符合美国眼库协会的医疗标准。 材料表列出了用品和设备。补充材料 1 概述了解剖、彩色眼底摄影和基于 OCT 的 MMI。?…

Representative Results

表1显示,在2016-2017年期间,从94名80岁的白人非糖尿病捐赠者>184只眼睛被回收。平均死亡至保存时间为3.9小时(范围:2.0-6.4小时)。在接受审查的184只眼睛中,75只(40.2%)患有某种AMD。确定了以下类别:不显着(39.7%),可疑(11.4%),早期中级AMD(22.8%),萎缩(7.6%),新生血管(9.8%),其他(8.7%)和未知/未记录/不可分级(<1%)。图2、图3、<strong class="xfig"…

Discussion

在 COVID 之前的 16 个月内使用基于人群的筛查方法,有可能获得 75 只患有 AMD 的供体眼睛。所有这些都用短DtoP回收,并使用OCT锚定的MMI进行分期。年龄标准(>80 岁)超出了用于可移植角膜的组织恢复的典型年龄范围。尽管年事已高,但我们的标准导致AMD各个阶段的眼睛。许多 RPE 表型在所有 AMD 分期都是通用的,有些是新生血管性 AMD346 所独有的。离?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢海德堡工程公司为原始眼罩提供仪器和设计,感谢Richard F. Spaide MD介绍基于OCT的多模态成像,感谢Christopher Girkin MD为访问临床成像设备提供便利,感谢David Fisher提供图1。人类供体眼睛用于研究的恢复得到了美国国立卫生研究院(NIH)拨款R01EY06019(C.A.C.),P30 EY003039(Pittler),R01EY015520(Smith),R01EY027948(C.A.C.,T.A.)的支持。R01EY030192(Li),R01EY031209(Stambolian)和U54EY032442(Spraggins),IZKF Würzburg(N-304,TA),阿拉巴马州视力基金会,国际视网膜研究基金会(C.A.C.),阿诺德和梅布尔贝克曼黄斑研究计划(C.A.C.)和预防失明AMD催化剂研究(Schey)。

Materials

Beakers, 250 mL Fisher # 02-540K
Bottles, 1 L, Pyrex  Fisher # 10-462-719 storage for preservative
Bunsen burner or heat source Eisco # 17-12-818 To melt wax
Camera, digital Nikon D7200 D7200
Computer and storage Apple iMac Pro; 14 TB external hard drive Image storage
Container, insulated Fisher # 02-591-45 For wet ice
Containers, 2 per donor, 40 mL Fisher Sameco Bio-Tite  40 mL # 13-711-86 For preservative
Crucible, quartz 30 mL Fisher # 08-072D Hold globe for photography
Cylinder, graduate, 250 mL Fisher # 08-549G
Disinfectant cleaning supplies   https://www.cardinalhealth.com/en/product-solutions/medical/infection-control/antiseptics.html
Eye holder with lens and mounting bracket contact J. Messinger jeffreymessinger@uabmc.edu custom modification of Heidelberg Engineering original design
Face Protection Masks Fisher # 19-910-667
Forceps, Harmon Fix Roboz  # RS-8247
Forceps, Micro Adson Roboz  # RS-5232
Forceps, Tissue Roboz # RS-5172
Glass petri dish, Kimax Fisher # 23064
Gloves Diamond Grip Fisher # MF-300
Gowns GenPro Fisher # 19-166-116
Image editing software Adobe Photoshop 2021, Creative Suite
KimWipes Fisher # 06-666
Lamps, 3 goosenecks Schott Imaging # A20800
Microscope, stereo Nikon SMZ 1000 for dissection
Microscope, stereo Olympus  SZX9 color fundus photography
Paraformaldehyde, 20%  EMS # 15713-S for preservative; dilute for storage
pH meter Fisher  # 01-913-806
Phosphate buffer, Sorenson’s, 0.2 M pH 7.2  EMS # 11600-10
Ring flash B & H Photo Video Sigma EM-140 DG 
Ruby bead, 1 mm diameter Meller Optics # MRB10MD
Safety Glasses 3M Fisher # 19-070-940
Scanning laser ophthalmoscope Heidelberg Engineering HRA2
Scissors, curved spring Roboz # RS-5681
Sharps container Fisher # 1482763
Shutter cord, remote Nikon MC-DC2
Spectral Domain OCT device Heidelberg Engineering Spectralis HRA&OCT https://www.heidelbergengineering.com/media/e-learning/Totara-US/files/pdf-tutorials/2238-003_Spectralis-Training-Guide.pdf
Stainless steel ball bearing, 25.4 mm diameter McMaster-Carr # 9529K31
Tissue marking dye, black Cancer Diagnostics Inc # 0727-1
Tissue slicer blades Thomas Scientific # 6767C18
Trephine, 18-mm diameter Stratis Healthcare # 6718L
TV monitor (HDMI) and cord for digital camera B&H Photo Video BH # COHD18G6PROB for live viewing and remote camera display features
Wax, pink dental EMS  # 72670
Wooden applicators Puritan # 807-12

References

  1. Spaide, R. F., et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: Consensus on neovascular age-related macular degeneration nomenclature study group. Ophthalmology. 127 (5), 616-636 (2020).
  2. Spaide, R. F., Ooto, S., Curcio, C. A. Subretinal drusenoid deposits a.k.a. pseudodrusen. Survey of Ophthalmology. 63 (6), 782-815 (2018).
  3. Curcio, C. A., Zanzottera, E. C., Ach, T., Balaratnasingam, C., Freund, K. B. Activated retinal pigment epithelium, an optical coherence tomography biomarker for progression in age-related macular degeneration. Investigative Ophthalmology & Visual Science. 58 (6), 211-226 (2017).
  4. Cao, D., et al. Hyperreflective foci, OCT progression indicators in age-related macular degeneration, include transdifferentiated retinal pigment epithelium. Investigative Ophthalmology & Visual Science. 62 (10), 34 (2021).
  5. Zanzottera, E. C., et al. Visualizing retinal pigment epithelium phenotypes in the transition to geographic atrophy in age-related macular degeneration. Retina. 36, S12-S25 (2016).
  6. Edwards, M. M., et al. Subretinal glial membranes in eyes with geographic atrophy. Investigative Ophthalmology & Visual Science. 58 (3), 1352-1367 (2017).
  7. Zhang, Z., Shen, M. M., Fu, Y. Combination of AIBP, apoA-I, and aflibercept overcomes anti-VEGF resistance in neovascular AMD by inhibiting arteriolar choroidal neovascularization. Investigative Ophthalmology & Visual Science. 63 (12), 2 (2022).
  8. Jiang, M., et al. Microtubule motors transport phagosomes in the RPE, and lack of KLC1 leads to AMD-like pathogenesis. Journal of Cell Biology. 210 (4), 595-611 (2015).
  9. Collin, G. B., et al. Disruption of murine Adamtsl4 results in zonular fiber detachment from the lens and in retinal pigment epithelium dedifferentiation. Human Molecular Genetics. 24 (24), 6958-6974 (2015).
  10. Curcio, C. A., Medeiros, N. E., Millican, C. L. The Alabama Age-related Macular Degeneration Grading System for donor eyes. Investigative Ophthalmology and Visual Science. 39 (7), 1085-1096 (1998).
  11. Bastek, J. V., Siegel, E. B., Straatsma, B. R., Foos, R. Y. Chorioretinal juncture. Pigmentary patterns of the peripheral fundus. Ophthalmology. 89 (12), 1455-1463 (1982).
  12. Lewis, H., Straatsma, B. R., Foos, R. Y., Lightfoot, D. O. Reticular degeneration of the pigment epithelium. Ophthalmology. 92 (11), 1485-1495 (1985).
  13. Lewis, H., Straatsma, B. R., Foos, R. Y. Chorioretinal juncture. Multiple extramacular drusen. Ophthalmology. 93 (8), 1098-1112 (1986).
  14. Sarks, J. P., Sarks, S. H., Killingsworth, M. C. Evolution of geographic atrophy of the retinal pigment epithelium. Eye. 2 (5), 552-577 (1988).
  15. Sarks, J. P., Sarks, S. H., Killingsworth, M. C. Evolution of soft drusen in age-related macular degeneration. Eye. 8 (3), 269-283 (1994).
  16. Ghazi, N. G., Dibernardo, C., Ying, H. S., Mori, K., Gehlbach, P. L. Optical coherence tomography of enucleated human eye specimens with histological correlation: Origin of the outer "red line&#34. American Journal of Ophthalmology. 141 (4), 719-726 (2006).
  17. Brown, N. H., et al. Developing SDOCT to assess donor human eyes prior to tissue sectioning for research. Graefe’s Archive for Clinical and Experimental Ophthalmology. 247 (8), 1069-1080 (2009).
  18. Helb, H. M., et al. Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high-resolution, spectral-domain optical coherence tomography. Acta Ophthalmologica. 88 (8), 842-849 (2010).
  19. Spaide, R. F., Curcio, C. A. Drusen characterization with multimodal imaging. Retina. 30 (9), 1441-1454 (2010).
  20. Naghavi, M., et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part 1. Circulation. 108 (14), 1664-1672 (2003).
  21. Garcia-Garcia, H. M., Gonzalo, N., Regar, E., Serruys, P. W. Virtual histology and optical coherence tomography: from research to a broad clinical application. Heart. 95 (16), 1362-1374 (2009).
  22. Strouthidis, N. G., et al. Comparison of clinical and spectral domain optical coherence tomography optic disc margin anatomy. Investigative Ophthalmology & Visual Science. 50 (10), 4709-4718 (2009).
  23. Sarks, S. H. Ageing and degeneration in the macular region: A clinico-pathological study. British Journal of Ophthalmology. 60 (5), 324-341 (1976).
  24. Sura, A. A., et al. Measuring the contributions of basal laminar deposit and Bruch’s membrane in age-related macular degeneration. Investigative Ophthalmology & Visual Science. 61 (13), 19 (2020).
  25. Chen, L., Messinger, J. D., Kar, D., Duncan, J. L., Curcio, C. A. Biometrics, impact, and significance of basal linear deposit and subretinal drusenoid deposit in age-related macular degeneration. Investigative Ophthalmology & Visual Science. 62 (1), 33 (2021).
  26. Litts, K. M., et al. Clinicopathological correlation of outer retinal tubulation in age-related macular degeneration. JAMA Ophthalmology. 133 (5), 609-612 (2015).
  27. Olsen, T. W., Feng, X. The Minnesota grading system of eye bank eyes for age-related macular degeneration. Investigative Ophthalmology & Visual Science. 45 (12), 4484-4490 (2004).
  28. Mano, F., Sprehe, N., Olsen, T. W. Association of drusen phenotype in age-related macular degeneration from human eye-bank eyes to disease stage and cause of death. Ophthalmology Retina. 5 (8), 743-749 (2021).
  29. Age-related eye disease study research group. The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: The Age-Related Eye Disease Study Report Number 6. American Journal of Ophthalmology. 132 (5), 668-681 (2001).
  30. Arnold, J. J., Sarks, S. H., Killingsworth, M. C., Sarks, J. P. Reticular pseudodrusen. A risk factor in age-related maculopathy. Retina. 15 (3), 183-191 (1995).
  31. Olsen, T. W., Bottini, A. R., Mendoza, P., Grossniklausk, H. E. The age-related macular degeneration complex: linking epidemiology and histopathology using the Minnesota grading system (the inaugural Frederick C. Blodi Lecture). Transactions of the American Ophthalmological Society. 113, (2015).
  32. Owen, L. A., et al. The Utah protocol for postmortem eye phenotyping and molecular biochemical analysis. Investigative Ophthalmology & Visual Science. 60 (4), 1204-1212 (2019).
  33. Wang, J. J., et al. Ten-year incidence and progression of age-related maculopathy: The Blue Mountains Eye Study. Ophthalmology. 114 (1), 92-98 (2007).
  34. Joachim, N., Mitchell, P., Burlutsky, G., Kifley, A., Wang, J. J. The incidence and progression of age-related macular degeneration over 15 years: The Blue Mountains Eye Study. Ophthalmology. 122 (12), 2482-2489 (2015).
  35. Pang, C., Messinger, J. D., Zanzottera, E. C., Freund, K. B., Curcio, C. A. The onion sign in neovascular age-related macular degeneration represents cholesterol crystals. Ophthalmology. 122 (11), 2316-2326 (2015).
  36. Keilhauer, C. N., Delori, F. C. Near-infrared autofluorescence imaging of the fundus: Visualization of ocular melanin. Investigative Ophthalmology & Visual Science. 47 (8), 3556-3564 (2006).
  37. Curcio, C. A., Saunders, P. L., Younger, P. W., Malek, G. Peripapillary chorioretinal atrophy: Bruch’s membrane changes and photoreceptor loss. Ophthalmology. 107 (2), 334-343 (2000).
  38. Curcio, C. A. Imaging maculopathy in the post-mortem human retina. Vision Research. 45 (28), 3496-3503 (2005).
  39. Brinkmann, M., et al. Histology and clinical lifecycle of acquired vitelliform lesion, a pathway to advanced age-related macular degeneration. American Journal of Ophthalmology. 240, 99-114 (2022).
  40. Ramtohul, P., et al. Bacillary layer detachment: Multimodal imaging and histologic evidence of a novel optical coherence tomography terminology. Literature review and proposed theory. Retina. 41 (11), 2193-2207 (2021).
  41. Wilson, J. D., Foster, T. H. Mie theory interpretations of light scattering from intact cells. Optics Letters. 30 (18), 2442-2444 (2005).
  42. Ghazi, N. G., Green, W. R. Pathology and pathogenesis of retinal detachment. Eye. 16 (4), 411-421 (2002).
  43. Berlin, A., et al. Correlation of optical coherence tomography angiography of type 3 macular neovascularization with corresponding histology. JAMA Ophthalmology. 140 (6), 628-633 (2022).
  44. Berlin, A., et al. Histology of type 3 macular neovascularization and microvascular anomalies in anti-VEGF treated age-related macular degeneration. Ophthalmology Science. 3 (3), 100280 (2023).
  45. Schaal, K. B., et al. Outer retinal tubulation in advanced age-related macular degeneration: optical coherence tomographic findings correspond to histology. Retina. 35 (7), 1339-1350 (2015).
  46. Chen, L., et al. Histology and clinical imaging lifecycle of black pigment in fibrosis secondary to neovascular age-related macular degeneration. Experimental Eye Research. 214, 108882 (2022).
  47. Balaratnasingam, C., et al. Histologic and optical coherence tomographic correlations in drusenoid pigment epithelium detachment in age-related macular degeneration. Ophthalmology. 124 (1), 644-656 (2017).
  48. Curcio, C. A., et al. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: Morphology, prevalence, topography, and biogenesis model. Retina. 33 (2), 265-276 (2013).
  49. Owsley, C., et al. Biologically guided optimization of test target location for rod-mediated dark adaptation in age-related macular degeneration: ALSTAR2 baseline. Ophthalmology Science. 3 (2), 100274 (2023).
  50. Anderson, D. M. G., et al. The molecular landscape of the human retina and supporting tissues by high resolution imaging mass spectrometry. Journal of the American Society for Mass Spectrometry. 31 (12), 2426-2436 (2020).
  51. Lee, J., Yoo, M., Choi, J. Recent advances in spatially resolved transcriptomics: challenges and opportunities. BMB Reports. 55 (3), 113-124 (2022).
  52. Diabetes. Alabama Public Health Available from: https://www.alabamapublichealth.gov/healthrankings/diabetes.html (2022)
  53. Francis, J. H., et al. Swept-source optical coherence tomography features of choroidal nevi. American Journal of Ophthalmology. 159 (1), 169-176 (2015).
  54. Inoue, M., Dansingani, K. K., Freund, K. B. Progression of age-related macular degeneration overlying a large choroidal vessel. Retina Cases Brief Reports. 10 (1), 22-25 (2016).
  55. Jaffe, G. J., et al. Imaging features associated with progression to geographic atrophy in age-related macular degeneration: CAM Report 5. Ophthalmology Retina. 5 (9), 855-867 (2021).
check_url/fr/65240?article_type=t

Play Video

Citer Cet Article
Messinger, J. D., Brinkmann, M., Kimble, J. A., Berlin, A., Freund, K. B., Grossman, G. H., Ach, T., Curcio, C. A. Ex Vivo OCT-Based Multimodal Imaging of Human Donor Eyes for Research into Age-Related Macular Degeneration. J. Vis. Exp. (195), e65240, doi:10.3791/65240 (2023).

View Video