Summary

使用组织解离器从小鼠白色脂肪组织中半自动分离基质血管部分

Published: May 19, 2023
doi:

Summary

该协议描述了从小鼠脂肪组织中半自动分离基质血管部分(SVF)以获得前脂肪细胞并在 体外实现脂肪细胞分化。使用组织解离剂进行胶原酶消化可减少实验变异并提高可重复性。

Abstract

白色、棕色和米色脂肪细胞分化的 体外 研究能够研究脂肪细胞的细胞自主功能及其机制。永生化的白色前脂肪细胞系是公开的,并被广泛使用。然而,使用公开的白色脂肪细胞系很难充分概括白色脂肪细胞响应外部线索在白色脂肪组织中出现米色脂肪细胞。通常从小鼠脂肪组织中分离基质血管部分(SVF)以获得原代前脂肪细胞并进行脂肪细胞分化。然而,用手切碎和胶原酶消化脂肪组织会导致实验变化,并且容易受到污染。在这里,我们提出了一种改进的半自动方案,该方案利用组织解离剂进行胶原酶消化,以实现更容易的SVF分离,目的是减少实验变异,减少污染并提高可重复性。获得的前脂肪细胞和分化的脂肪细胞可用于功能和机理分析。

Introduction

由于全球肥胖和2型糖尿病的患病率日益增加,脂肪组织生物学一直受到越来越多的关注1。脂肪细胞以脂滴的形式储存多余的能量,这些脂滴在饥饿时释放。此外,脂肪组织通过充当内分泌器官并与其他组织交流来维持全身能量稳态23。有趣的是,过多的脂肪组织(肥胖)和脂肪损失(脂肪营养不良)都与胰岛素抵抗和糖尿病有关1。脂肪细胞分为三种类型:白色、棕色和米色1.白色脂肪细胞主要以脂质的形式储存多余的能量,而棕色和米色的脂肪细胞通过线粒体解偶联蛋白-1(Ucp1)热量的形式耗散能量14。值得注意的是,米色脂肪细胞(也称为“诱导”棕色脂肪细胞)响应寒冷或交感神经刺激出现在白色脂肪组织中,并表现出与“经典”棕色脂肪细胞重叠但不同的基因表达模式5。最近,棕色和米色脂肪细胞有望成为抗肥胖和抗糖尿病治疗的潜在靶标,旨在“增强能量耗散”而不是“抑制能量摄入”4。支持性地,FTO肥胖变体rs1421085在人类中的风险等位基因,在常见变异67中表现出与较高体重指数(BMI)的最强关联,并表现出各种基因 – 环境相互作用89据报道对米色脂肪细胞分化和功能产生负调节10.过氧化物酶体增殖物激活受体γ(PPARγ)被称为脂肪生成的主要转录调节因子,对于脂肪细胞分化是必要且充分的11。转录调节因子,例如含有 16 (PRDM16)、早期 B 细胞因子 2 (EBF2) 和核因子 I-A (NFIA) 的 PRD1-BF1-RIZ1 同源结构域,对于棕色和米色脂肪细胞分化和功能至关重要 12,13,14,15,16,1718.另一方面,白色脂肪细胞基因编程需要转录调节因子,例如转导蛋白样增强蛋白3(TLE3)和锌指蛋白423(ZFP423)192021

体外模型系统能够进行分子研究,旨在提高对脂肪细胞功能和功能障碍机制的理解。尽管存在公开可用且永生化的前脂肪细胞系,例如3T3-L1和3T3-F442A222222,但原代前脂肪细胞的培养和分化为脂肪细胞将是更适合研究体内脂肪生成的模型。从小鼠脂肪组织中分离基质血管部分(SVF)是获得原代前脂肪细胞2526的公知方法。然而,脂肪组织的胶原酶消化通常使用带有试管架的细菌摇床进行,可导致实验变化,并且容易受到污染2728。在这里,我们描述了一种替代方案,该方案使用温和的磁激活细胞分选(MACS)组织解离剂进行胶原酶消化,以实现更容易的SVF分离。

Protocol

本协议中描述的所有动物实验均由东京大学机构动物护理和使用委员会(IACUC)批准,并根据东京大学的机构指南进行。 1. 酶溶液和培养基的制备 将来自7-8周龄小鼠的腹股沟白色脂肪组织(右侧和左侧,约150mg)和2.5mL酶溶液放入解离器的管C中。 用 3 mL 不含胎牛血清 (FBS) 或抗生素的 Dulbecco 改良鹰培养基 (DMEM)/F12 复溶酶 D,用不含胎牛血清 (…

Representative Results

该方案在诱导脂肪细胞分化后 7 天产生完全分化的、富含脂质的脂肪细胞。脂肪细胞分化的程度可以通过甘油三酯和脂质的油红o染色(图1A)或使用脂肪细胞基因的qPCR-RT进行mRNA表达分析来评估,例如脂肪生成Pparg的主调节因子及其靶标Fabp4(图1B)。为了在体外诱导米色脂肪细胞分化,可以使用一类噻唑烷二酮类PPARγ激动剂,例如?…

Discussion

在这里,我们描述了一种从小鼠脂肪组织中分离SVF以获得前脂肪细胞并在 体外进行脂肪细胞分化的方案。使用组织解离剂进行胶原酶消化减少了实验变异,降低了污染风险,并提高了可重复性。虽然此过程是所提出的协议中的关键步骤,但该过程是高度自动化的,不需要优化。但是,根据小鼠年龄和脂肪组织库,可能需要优化切碎,例如大小碎片或切割时间。

SVF 被称…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者要感谢Takahito Wada和Saiko Yoshida(东京大学,东京,日本)的实验帮助。这项工作由以下对Y.H.的赠款资助:东京大学优秀青年研究员计划的研究资助;日本科学促进会(JSPS)KAKENHI早期职业科学家补助金,资助号19K17976;日本应用酶学基金会未来糖尿病研究领跑者(FFDR)资助,资助号17F005;药理学研究基金会的资助;Mochida纪念医学和药物研究基金会的资助;默沙东生命科学基金会的资助;大和证券健康财团的赠款;东京生化研究财团资助;武田科学基金会生命科学研究基金;以及SENSSHIN医学研究基金会的资助。

Materials

100 mm dish Corning 430167
12 well plate Corning 3513
60 mm dish IWAKI 3010-060
Adipose Tissue Dissociation Kit, mouse and rat Miltenyi Biotec 130-105-808 contents: Enzyme D, Enzyme R, Enzyme A and Buffer A
Cell strainer 70 µm BD falcon #352350
Collagen coated dishes, 100 mm BD #356450
Collagen coated dishes, 60 mm BD #354401
Collagen I Coat Microplate 6 well IWAKI 4810-010
Dexamethasone Wako 041-18861
Dissecting Forceps N/A N/A autoclave before use
Dissecting Scissors, blunt/sharp N/A N/A autoclave before use
Dissecting Scissors, sharp/sharp N/A N/A autoclave before use
DMEM/F-12, GlutaMAX supplement Gibco 10565-042
Fetal Bovine Serum (FBS) N/A N/A
gentleMACS C Tubes Milteny Biotec 130-093-237
gentleMACSOcto Dissociator with Heaters Miltenyi Biotec 130-096-427
Humulin R Injection U-100 Eli Lilly 872492
Indomethacin Sigma I7378-5G
Isobutylmethylxanthine (IBMX) Sigma 17018-1G
Lipofectamine 2000 Life Technologies 11668-019
Neomycin Sulfate Fujifilm 146-08871 
Opti-MEM Invitrogen  31985-062
pBABE-neo largeTcDNA (SV40) Add gene #1780
PBS tablets Takara T900
Platinum-E (Plat-E) Retroviral Packaging Cell Line cell biolab RV-101
Polybrene Nacalai Tesque 12996-81
Power Sybr Green Master Mix Applied Biosystems 4367659
ReverTra Ace qPCR RT Master Mix TOYOBO #FSQ-201
RNeasy Mini Kit (250) QIAGEN 74106
Rosiglitazone Wako 180-02653
T3 Sigma T2877-100mg
Trypsin-EDTA (0.05%) Gibco 25200-056

References

  1. Rosen, E. D., Spiegelman, B. M. What we talk about when we talk about fat. Cell. 156 (1-2), 20-44 (2014).
  2. Hotamisligil, G. S., Shargill, N. S., Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 259 (5091), 87-91 (1993).
  3. Zhang, Y., et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 372 (6505), 425-432 (1994).
  4. Kajimura, S., Saito, M. A new era in brown adipose tissue biology: Molecular control of brown fat development and energy homeostasis. Annual Review of Physiology. 76, 225-249 (2014).
  5. Wu, J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 150 (2), 366-376 (2012).
  6. Loos, R. J. F., Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nature Reviews Genetics. 23 (2), 120-133 (2022).
  7. Loos, R. J. F., Yeo, G. S. H. The bigger picture of FTO-the first GWAS-identified obesity gene. Nature Reviews Endocrinology. 10 (1), 51-61 (2014).
  8. Hiraike, Y., Yang, C. T., Liu, W. J., Yamada, T., Lee, C. L. FTO obesity variant-exercise interaction on changes in body weight and BMI: The Taiwan biobank study. The Journal of Clinical Endocrinology and Metabolism. 106 (9), e3673-e3681 (2021).
  9. Li, S., et al. Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Medicine. 7 (8), e1000332 (2010).
  10. Claussnitzer, M., et al. FTO obesity variant circuitry and adipocyte browning in humans. The New England Journal of Medicine. 373 (10), 895-907 (2015).
  11. Tontonoz, P., Hu, E., Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 79 (7), 1147-1156 (1994).
  12. Seale, P., et al. Transcriptional control of brown fat determination by PRDM16. Cell Metabolism. 6 (1), 38-54 (2007).
  13. Seale, P., et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 454 (7207), 961-967 (2008).
  14. Rajakumari, S., et al. EBF2 determines and maintains brown adipocyte identity. Cell Metabolism. 17 (4), 562-574 (2013).
  15. Shapira, S. N., et al. EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex. Genes and Development. 31 (7), 660-673 (2017).
  16. Hiraike, Y., et al. NFIA co-localizes with PPARγ and transcriptionally controls the brown fat gene program. Nature Cell Biology. 19 (9), 1081-1092 (2017).
  17. Hiraike, Y., et al. NFIA differentially controls adipogenic and myogenic gene program through distinct pathways to ensure brown and beige adipocyte differentiation. PLoS Genetics. 16 (9), e1009044 (2020).
  18. Hiraike, Y., et al. NFIA determines the cis-effect of genetic variation on Ucp1 expression in murine thermogenic adipocytes. iScience. 25 (8), 104729 (2022).
  19. Villanueva, C. J., et al. Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARγ specifies lipid storage versus thermogenic gene programs. Cell Metabolism. 17 (3), 423-435 (2013).
  20. Pearson, S., et al. Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism. Genes and Development. 33 (13-14), 747-762 (2019).
  21. Shao, M., et al. Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metabolism. 23 (6), 1167-1184 (2016).
  22. Green, H., Kehinde, O. Sublines of mouse 3T3 cells that accumulate lipid. Cell. 1 (3), 113-116 (1974).
  23. Green, H., Kehinde, O. An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell. 5 (1), 19-27 (1975).
  24. Green, H., Kehinde, O. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell. 7 (1), 105-113 (1976).
  25. Aune, U. L., Ruiz, L., Kajimura, S. Isolation and differentiation of stromal vascular cells to beige/brite cells. Journal of Visualized Experiments. (73), e50191 (2013).
  26. Galmozzi, A., Kok, B. P., Saez, E. Isolation and differentiation of primary white and brown preadipocytes from newborn mice. Journal of Visualized Experiments. (167), e62005 (2021).
  27. Priya, N., Sarcar, S., Majumdar, A. S., SundarRaj, S. Explant culture: a simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. Journal of Tissue Engineering and Regenerative Medicine. 8 (9), 706-716 (2014).
  28. Lockhart, R. A., Aronowitz, J. A., Dos-Anjos Vilaboa, S. Use of freshly isolated human adipose stromal cells for clinical applications. Aesthetic Surgery Journal. 37, S4-S8 (2017).
  29. Morita, S., Kojima, T., Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Therapy. 7 (12), 1063-1066 (2000).
  30. Li, Y., Fromme, T., Klingenspor, M. Meaningful respirometric measurements of UCP1-mediated thermogenesis. Biochimie. 134, 56-61 (2017).
  31. Hiraike, Y. Chromatin immunoprecipitation with mouse adipocytes using hypotonic buffer to enrich nuclear fraction before fixation. STAR Protocols. 4 (1), 102093 (2023).
  32. Rodeheffer, M. S., Birsoy, K., Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell. 135 (2), 240-249 (2008).
check_url/fr/65265?article_type=t

Play Video

Citer Cet Article
Saito, K., Hiraike, Y., Oguchi, M., Yamauchi, T. Semi-Automated Isolation of the Stromal Vascular Fraction from Murine White Adipose Tissue Using a Tissue Dissociator. J. Vis. Exp. (195), e65265, doi:10.3791/65265 (2023).

View Video