Summary

脊髓切片 的离体 制备,用于脊髓刺激过程中运动神经元的全细胞膜片钳记录

Published: September 08, 2023
doi:

Summary

该协议描述了一种使用膜片钳研究运动神经元对脊髓刺激(SCS)的电反应的方法,具有高时空分辨率,这可以帮助研究人员提高分离脊髓和同时维持细胞活力的技能。

Abstract

脊髓刺激(SCS)可有效恢复脊髓损伤(SCI)后的运动功能。由于运动神经元是执行感觉运动行为的最终单位,因此直接研究SCS运动神经元的电反应可以帮助我们理解脊髓运动调节的底层逻辑。为了同时记录不同的刺激特征和细胞反应,膜片钳是在单细胞尺度上研究电生理特征的好方法。然而,实现这一目标仍然存在一些复杂的困难,包括维持细胞活力、快速将脊髓与骨结构分离,以及利用SCS成功诱导动作电位。在这里,我们提出了一个详细的方案,使用膜片钳以高时空分辨率研究运动神经元对SCS的电反应,这可以帮助研究人员提高分离脊髓和维持细胞活力的技能,以顺利研究SCS对运动神经元的电机制,避免不必要的试验和错误。

Introduction

脊髓刺激(SCS)可有效恢复脊髓损伤(SCI)后的运动功能。Andreas Rowald 等人报告说,SCS 在一天内实现了下肢运动和躯干功能1.探索SCS对运动恢复的生物学机制是制定更精确的SCS策略的关键和趋势研究领域。例如,Grégoire Courtine的团队证明,脊髓中的兴奋性Vsx2中间神经元和Hoxa10神经元是响应SCS的关键神经元,细胞特异性神经调控在SCI2后恢复大鼠行走能力是可行的。然而,很少有研究关注单细胞尺度上SCS的电机制。尽管众所周知,超阈值直流电刺激可以引发经典鱿鱼实验3,4,5中的动作电位(AP),但脉冲交变电刺激(如SCS)如何影响运动信号的产生仍不清楚。

鉴于脊髓内神经回路的复杂性,适当选择细胞群对于研究SCS的电机制非常重要。尽管 SCS 通过激活本体感受通路6 来恢复运动功能,但运动神经元是执行运动命令的最终单元,该命令来自整合本体感受信息传入输入7。因此,直接用SCS研究运动神经元的电特性可以帮助我们理解脊髓运动调节的底层逻辑。

众所周知,膜片钳是细胞电生理记录的金标准方法,具有极高的时空分辨率8。因此,本研究描述了一种使用膜片钳研究运动神经元对SCS的电反应的方法。与脑膜片钳9相比,脊髓膜片钳的难度更大,原因如下:(1)脊髓由体积小的椎管保护,需要非常精细的显微操作和严格的冰冷维护才能获得更好的细胞活力。(2)由于脊髓太细,无法固定在切割盘上,应将其浸入低熔点琼脂糖中,固化后进行修整。

因此,该方法在解剖脊髓和保持细胞活力的同时提供了技术细节,从而顺利地研究SCS对运动神经元的电机制,避免不必要的试验和错误。

Protocol

机构动物护理和使用委员会批准了所有动物实验,研究是按照相关的动物福利法规进行的。 1. 动物准备 动物饲养信息:在特定的无病原体环境中饲养雄性Sprague-Dawley大鼠(出生后10-14天,P10-P14)。注意:室温保持在20°C±2°C,湿度:50%-60%,光/暗循环12小时。动物可以自由获得食物和水。 逆行标记运动神经元:将氟金(FG)注射到双侧胫骨…

Representative Results

由于精细操作期间严格的低温维护(补充图1、补充图2和图1),细胞活力足以进行后续的电生理记录。为了尽可能地模拟临床场景,我们使用显微操作将 SCS 阴极和阳极分别放置在背中线和 DREZ 附近(图 2),这可以启动背角中的神经信号传播到运动柱背外侧区域的运动神经元。在这项研究中,我们使用FG定位直径为20-50μm的运动神经元。<st…

Discussion

SCS调制的运动信息最终收敛到运动神经元。因此,以运动神经元为研究靶点可以简化研究设计,更直接地揭示SCS的神经调控机制。为了同时记录不同的刺激特征和细胞反应,膜片钳是在单细胞尺度上研究电生理特征的好方法。然而,仍然存在一些困难,包括如何保持细胞活力,如何快速将脊髓与骨结构分离,以及如何利用SCS成功诱导APs。因此,本研究旨在帮助研究人员快速掌握基本的操作技能,?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

本研究由国家自然科学基金青年基金(52207254和82301657)和中国博士后科学基金(2022M711833)资助。

Materials

Adenosine 5’-triphosphate magnesium salt Sigma A9187
Ascorbic Acid Sigma A4034
CaCl2·2H2O Sigma C5080
Choline Chloride Sigma C7527
Cover slide tweezers VETUS 36A-SA Clip a slice
D-Glucose Sigma G8270
EGTA Sigma E4378
Fine scissors RWD Life Science S12006-10 Cut the diaphragm
Fluorescence Light Source Olympus  U-HGLGPS
Fluoro-Gold Fluorochrome Fluorochrome Label the motor neuron
Guanosine 5′-triphosphate sodium salt hydrate Sigma G8877
HEPES Sigma H3375
infrared CCD camera Dage-MTI IR-1000E
KCl Sigma P5405
K-gluconate Sigma P1847
Low melting point agarose Sigma A9414
MgSO4·7H2O Sigma M2773
Micromanipulator  Sutter Instrument  MP-200
Micropipette puller Sutter instrument P1000
Micro-scissors  Jinzhong wa1020 Laminectomy
Microscope for anatomy Olympus  SZX10
Microscope for ecletrophysiology Olympus  BX51WI
Micro-toothed tweezers RWD Life Science F11008-09 Lift the cut vertebral body
NaCl Sigma S5886
NaH2PO4 Sigma S8282
NaHCO3 Sigma V900182
Na-Phosphocreatine Sigma P7936
Objective lens for ecletrophysiology Olympus  LUMPLFLN60XW working distance 2 mm 
Osmometer  Advanced  FISKE 210
Patch-clamp amplifier  Axon  Multiclamp 700B
Patch-clamp digitizer Axon  Digidata 1550B
pH meter  Mettler Toledo  FE28
Slice Anchor Multichannel system SHD-27H
Spinal cord stimulatior PINS T901
Toothed tweezer RWD Life Science F13030-10 Lift the xiphoid
Vibratome Leica VT1200S
Wide band ultraviolet excitation filter Olympus  U-MF2

References

  1. Rowald, A., et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nature Medicine. 28 (2), 260-271 (2022).
  2. Kathe, C., et al. The neurons that restore walking after paralysis. Nature. 611 (7936), 540-547 (2022).
  3. Smith, S. J., Buchanan, J., Osses, L. R., Charlton, M. P., Augustine, G. J. The spatial distribution of calcium signals in squid presynaptic terminals. The Journal of Physiology. 472, 573-593 (1993).
  4. Augustine, G. J. Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. The Journal of Physiology. 431, 343-364 (1990).
  5. Llinás, R., McGuinness, T. L., Leonard, C. S., Sugimori, M., Greengard, P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proceedings of the National Academy of Sciences of the United States of America. 82 (9), 3035-3039 (1985).
  6. Formento, E., et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nature Neuroscience. 21 (12), 1728-1741 (2018).
  7. Hari, K., et al. GABA facilitates spike propagation through branch points of sensory axons in the spinal cord. Nature Neuroscience. 25 (10), 1288-1299 (2022).
  8. Sakmann, B., Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annual Review Of Physiology. 46, 455-472 (1984).
  9. Leroy, F., Lamotte d’Incamps, B. The preparation of oblique spinal cord slices for ventral root stimulation. Journal of Visualized Experiments:JoVE. (116), e54525 (2016).
  10. Sharples, S. A., Miles, G. B. Maturation of persistent and hyperpolarization-activated inward currents shapes the differential activation of motoneuron subtypes during postnatal development. Elife. 10, e71385 (2021).
  11. Bhumbra, G. S., Beato, M. Recurrent excitation between motoneurones propagates across segments and is purely glutamatergic. PLoS Biology. 16 (3), e2003586 (2018).
  12. Leroy, F., Lamotte d’Incamps, B., Imhoff-Manuel, R. D., Zytnicki, D. Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis. Elife. 3, 04046 (2014).
  13. Tahir, R. A., Pabaney, A. H. Therapeutic hypothermia and ischemic stroke: A literature review. Surgical Neurology International. 7, S381-S386 (2016).
  14. Lu, Y., et al. Management of intractable pain in patients with implanted spinal cord stimulation devices during the COVID-19 pandemic using a remote and wireless programming system. Frontiers in Neuroscience. 14, 594696 (2020).
  15. Yao, Q., et al. Wireless epidural electrical stimulation in combination with serotonin agonists improves intraspinal metabolism in spinal cord injury rats. Neuromodulation. 24 (3), 416-426 (2021).
  16. Arlotti, M., Rahman, A., Minhas, P., Bikson, M. Axon terminal polarization induced by weak uniform dc electric fields: a modeling study. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , 4575-4578 (2012).
  17. Espino, C. M., et al. Na(V)1.1 is essential for proprioceptive signaling and motor behaviors. Elife. 11, e79917 (2022).
  18. Romer, S. H., Deardorff, A. S., Fyffe, R. E. W. A molecular rheostat: Kv2.1 currents maintain or suppress repetitive firing in motoneurons. The Journal of Physiology. 597 (14), 3769-3786 (2019).
  19. Yao, X., et al. Structures of the R-type human Ca(v)2.3 channel reveal conformational crosstalk of the intracellular segments. Nature Communications. 13 (1), 7358 (2022).
  20. Bandres, M. F., Gomes, J., McPherson, J. G. Spontaneous multimodal neural transmission suggests that adult spinal networks maintain an intrinsic state of readiness to execute sensorimotor behaviors. Journal Of Neuroscience. 41 (38), 7978-7990 (2021).
  21. Manuel, M., Heckman, C. J. Simultaneous intracellular recording of a lumbar motoneuron and the force produced by its motor unit in the adult mouse in vivo. Journal of Visualized Experiments: JoVE. (70), e4312 (2012).
  22. Luo, X., Wang, S., Rutkove, S. B., Sanchez, B. Nonhomogeneous volume conduction effects affecting needle electromyography: an analytical and simulation study. Physiological Measurement. 42 (11), (2021).
  23. Barra, B., et al. Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nature Neuroscience. 25 (7), 924-934 (2022).
  24. Powell, M. P., et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nature Medicine. 29 (3), 689-699 (2023).
  25. Wenger, N., et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nature Medicine. 22 (2), 138-145 (2016).
  26. Özyurt, M. G., Ojeda-Alonso, J., Beato, M., Nascimento, F. In vitro longitudinal lumbar spinal cord preparations to study sensory and recurrent motor microcircuits of juvenile mice. Journal of Neurophysiology. 128 (3), 711-726 (2022).
  27. Moraud, E. M., et al. Mechanisms underlying the neuromodulation of spinal circuits for correcting gait and balance deficits after spinal cord injury. Neuron. 89 (4), 814-828 (2016).
  28. Capogrosso, M., et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. Journal of Neuroscience. 33 (49), 19326-19340 (2013).
check_url/fr/65385?article_type=t

Play Video

Citer Cet Article
Yao, Q., Luo, X., Liu, J., Li, L. The Ex vivo Preparation of Spinal Cord Slice for the Whole-Cell Patch-Clamp Recording in Motor Neurons During Spinal Cord Stimulation. J. Vis. Exp. (199), e65385, doi:10.3791/65385 (2023).

View Video