Summary

Obtención de imágenes a largo plazo de poblaciones neuronales identificadas mediante microprismas en animales que se mueven libremente y con la cabeza fija

Published: January 19, 2024
doi:

Summary

Cuando se integra con una placa de cabeza y un diseño óptico compatible con microscopios de uno y dos fotones, la lente de microprisma presenta una ventaja significativa en la medición de respuestas neuronales en una columna vertical en diversas condiciones, incluidos experimentos bien controlados en estados de cabeza fija o tareas de comportamiento natural en animales que se mueven libremente.

Abstract

Con el avance de la microscopía multifotónica y las tecnologías moleculares, las imágenes de fluorescencia están creciendo rápidamente para convertirse en un enfoque poderoso para estudiar la estructura, la función y la plasticidad de los tejidos cerebrales vivos. En comparación con la electrofisiología convencional, la microscopía de fluorescencia puede capturar la actividad neuronal, así como la morfología de las células, lo que permite registros a largo plazo de las poblaciones de neuronas identificadas con una resolución unicelular o subcelular. Sin embargo, las imágenes de alta resolución generalmente requieren una configuración estable y fija en la cabeza que restringe el movimiento del animal, y la preparación de una superficie plana de vidrio transparente permite la visualización de neuronas en uno o más planos horizontales, pero está limitada en el estudio de los procesos verticales que se ejecutan a diferentes profundidades. Aquí, describimos un procedimiento para combinar una fijación de la placa de la cabeza y un microprisma que proporciona imágenes multicapa y multimodal. Esta preparación quirúrgica no solo da acceso a toda la columna de la corteza visual del ratón, sino que permite obtener imágenes de dos fotones en una posición fija de la cabeza y obtener imágenes de un fotón en un paradigma de movimiento libre. Con este enfoque, se pueden muestrear poblaciones celulares identificadas en diferentes capas corticales, registrar sus respuestas en estados fijos y de movimiento libre, y realizar un seguimiento de los cambios a largo plazo durante meses. Por lo tanto, este método proporciona un ensayo completo de los microcircuitos, lo que permite la comparación directa de las actividades neuronales evocadas por estímulos bien controlados y bajo un paradigma de comportamiento natural.

Introduction

El advenimiento de las imágenes fluorescentes de dos fotones in vivo 1,2, que combinan las nuevas tecnologías en sistemas ópticos e indicadores de fluorescencia modificados genéticamente, ha surgido como una técnica poderosa en neurociencia para investigar la intrincada estructura, función y plasticidad en el cerebro vivo 3,4. En particular, esta modalidad de imagen ofrece una ventaja sin precedentes sobre la electrofisiología tradicional al capturar tanto la morfología como las actividades dinámicas de las neuronas, lo que facilita el seguimiento a largo plazo de las neuronas identificadas 5,6,7,8.

A pesar de sus notables fortalezas, la aplicación de imágenes de fluorescencia de alta resolución a menudo requiere una configuración estática fija de la cabeza que restringe la movilidad del animal 9,10,11. Además, el uso de una superficie de vidrio transparente para visualizar neuronas restringe las observaciones a uno o más planos horizontales, lo que limita la exploración de la dinámica de los procesos verticales que se extienden a través de diferentes profundidades corticales12.

Abordando estas limitaciones, el presente estudio describe un procedimiento quirúrgico innovador que integra la fijación de la placa de la cabeza, el microprisma y el miniscopio para crear una modalidad de imagen con capacidades multicapa y multimodal. El microprisma permite observar el procesamiento vertical a lo largo de la columna cortical 13,14,15,16, lo cual es fundamental para comprender cómo se procesa y transforma la información a medida que se mueve a través de las diferentes capas de la corteza y cómo se altera el procesamiento vertical durante los cambios plásticos. Además, permite obtener imágenes de las mismas poblaciones neuronales en un paradigma de fijación de la cabeza y en un entorno de movimiento libre, que abarca los versátiles entornos experimentales 17,18,19: por ejemplo, la fijación de la cabeza a menudo se requiere para paradigmas bien controlados como la evaluación de la percepción sensorial y los registros estables bajo el paradigma de 2 fotones, mientras que el movimiento libre ofrece un entorno más natural y flexible para los estudios del comportamiento. Por lo tanto, la capacidad de realizar una comparación directa en ambos modos es crucial para avanzar en nuestra comprensión de los microcircuitos que permiten respuestas flexibles y funcionales.

En esencia, la integración de la fijación de la placa de la cabeza, el microprisma y el miniscopio en las imágenes de fluorescencia ofrece una plataforma prometedora para sondear las complejidades de la estructura y funcionalidad del cerebro. Los investigadores pueden tomar muestras de poblaciones celulares identificadas a través de varias profundidades que abarcan todas las capas corticales, comparar directamente sus respuestas tanto en paradigmas bien controlados como naturales, y monitorear sus alteraciones a largo plazodurante meses. Este enfoque ofrece información valiosa sobre cómo estas poblaciones neuronales interactúan y cambian a lo largo del tiempo en diferentes condiciones experimentales, proporcionando una ventana a la naturaleza dinámica de los circuitos neuronales.

Protocol

Todos los experimentos se llevaron a cabo de acuerdo con la Ley de Animales (Procedimientos Científicos) del Reino Unido de 1986 bajo licencias personales y de proyectos aprobadas y emitidas por el Ministerio del Interior del Reino Unido después de la revisión ética correspondiente. Líneas transgénicas adultas CaMKII-TTA; GCaMP6S-TRE21 fueron criados y sus descendientes utilizados en el experimento. Para la seguridad de los experimentadores y el mantenimiento de las condiciones estériles, t…

Representative Results

Se ha demostrado el método de realizar imágenes crónicas de calcio in vivo multicapa de la misma población neuronal durante un período de varias semanas, utilizando modalidades de imágenes de uno y dos fotones, en condiciones de movimiento libre y fijación de la cabeza. Aquí, se ha demostrado la capacidad de identificar poblaciones neuronales coincidentes bajo imágenes de un fotón mientras el animal exploraba una arena abierta en la oscuridad (Figura 7A). Se extrajeron tra…

Discussion

Aquí, hemos demostrado la capacidad de observar y comparar directamente neuronas en condiciones de cabeza fija y movimiento libre en las mismas poblaciones neuronales. Si bien demostramos la aplicación en la corteza visual, este protocolo se puede adaptar a una multitud de otras áreas cerebrales, tanto áreas corticales como núcleos profundos 24,25,26,27,28, así como a otras configuraciones de adquisición de datos y comportamiento <sup class="xre…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Agradecemos a la Sra. Charu Reddy y al Profesor Matteo Carandini (Cortex Lab) por sus consejos sobre el protocolo quirúrgico y el intercambio de cepas de ratones transgénicos. Agradecemos al Dr. Norbert Hogrefe (Inscopix) por su orientación y asistencia durante el desarrollo de la cirugía. Agradecemos a la Sra. Andreea Aldea (Sun Lab) por su ayuda con la configuración quirúrgica y el procesamiento de datos. Este trabajo fue apoyado por la organización benéfica Moorfields Eye.

Materials

0.9% Sodium Chloride solution for infusion (Vetivex 11) 250ml Dechra 20091607 Saline for hydration and drug reconsitution
18004-1 Trephine 1.8mm diameter bur FST 18004-18 Drill bit
1ml syringe Terumo MDSS01SE 1ml syringe
23G x 5/8 inch 6% LUER needle Terumo NN-2316R 23G needle
71000 Automated stereotaxic apparatus w/ built-in software RWD RWD
Absorbable Haemostatic Gelatin Sponge (10x10x10mm) Surgispon SSP-101010 gel-foam
Alcohol pads 70% isopropyl alcohol Braun 9160612 Alcohol pads
Aluminium foil Any retailer Foil to cover eyes during surgery
Articifical Cerebrospinal Fluid  Tocris Bioscience a Bio-Techne Brand 3525/25ML ACSF
Automated microinjection pump WPI 8091
Betadine solution (10% iodinated Povidone) 500ml Videne/Ecolab 3030440 Betadine
Bruker Ultime 2Pplus (customised) Bruker Two-photon imaging system 
Cardiff Aldasorber Vet-Tech AN006 Anaesthesia absorber
CFI S Plan Fluor ELWD ADM 20XC Nikon MRH48230 20x objective lens
Compact Anaesthesia system – single gas – isoflurane K/F, with oxygen concentrator model: ZY-5AC and scavenging unit Vet-Tech AN001 Compact anaesthesia system 
Contec Prochlor  Aston Pharma AP2111L1 Disinfectant (hypochlorous acid)
Dexamethasone Sodium Phosphate Injection, USP, 4mg/ml, NDC: 0641-6145-25 Hikma Covetrus:70789 Dexamethasone
Dissecting Knife, cutting edge 4mm, thickness 0.5mm, stainless steel Fine Science Tools 10055-12 Knife for incisino of cortex
Dual-Sided, Non-Puncture Mouse & Neonatal Rat Ear Bars Stoelting 51649 Ear bar
Dummy microscope Inscopix Dummy microscope To help with implantation
Ethanol (100%)  VWR 40-1712-25 Used to make 70% ethanol 
Fisherbrand Nitrile Indigo Disposable Gloves PPE Cat III FischerScientific 17182182 Gloves
Homeothermic Monitor 50-7222-F Harvard Apparatus 50-7222-F Homeothermic monitoring system/heating pad
Image processing software ImageJ Image processing software
Inscopix Data Processing Software (IDPS) Inscopix One-photon calcium imaging processing software
Insight Duals-232, S/N 2043 InSight Insight Spectra X3 Two-photon imaging laser
IsoFlo 250ml 100% w/w inhalation Zoetis WM 42058/4195 Isoflurane
Kwik-Sil Low Toxicity Silicone Adhesive World Precision Intruments (WPI) KWIK-SIL Silicone adhesive
MICROMOT mains adapter NG 2/S, w/ Drill unit 60/E PROXXON NO 28 515 Handheld drill
nVoke Integrated Imaging and Optogenetics System package Inscopix One-photon Imaging system and software
ProView Implant Kit Inscopix ProView Implant Kit Dummy microscope, stereotaxic arm and attachment 
ProView Prism Probe Inscopix 1050-002203 Microprism lens
Rimadyl (50mg/ml) Zoetis VM 42058/4123 Carprofen 
Stereotaxis Microscope on Articulated arm with table clamp WPI PZMTIII-AAC  Microscope
Super-Bond Universal kit, SUN Medical Prestige-Dental K058E Adhesive cement
Two-photon calcium image software Suite2P Two-photon calcium imaging processing software
Vapouriser Vet-Tech Isoflurane vapouriser
Xailin Lubricating Eye Ointment 5g Xailin-Night MLG/28/1551 Ophthalmic ointment 

References

  1. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248 (4951), 73-76 (1990).
  2. Svoboda, K., Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron. 50 (6), 823-839 (2006).
  3. Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L., Tank, D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron. 56 (1), 43-57 (2007).
  4. Vaziri, A., Emiliani, V. Reshaping the optical dimension in optogenetics. Curr Opin Neurobiol. 22 (1), 128-137 (2012).
  5. Holtmaat, A., et al. high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc. 4 (8), 1128-1144 (2009).
  6. Sun, Y. J., Sebastian Espinosa, J., Hoseini, M. S., Stryker, M. P. Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex. Proc Natl Acad Sci U S A. 116 (43), 21812-21820 (2019).
  7. Andermann, M. L., Kerlin, A. M., Reid, R. C. Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front Cell Neurosci. 4, 3 (2010).
  8. Sofroniew, N. J., Flickinger, D., King, J., Svoboda, K. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. Elife. 5, 14472 (2016).
  9. Puścian, A., Benisty, H., Higley, M. J. NMDAR-dependent emergence of behavioral representation in primary visual cortex. Cell Rep. 32 (4), 107970 (2020).
  10. Trachtenberg, J. T., et al. Long-term in vivo. imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 420 (6917), 788-794 (2002).
  11. Seaton, G., et al. Dual-component structural plasticity mediated by αCaMKII autophosphorylation on basal dendrites of cortical layer 2/3 neurones. J Neurosci. 40 (11), 2228-2245 (2020).
  12. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat Methods. 2 (12), 932-940 (2005).
  13. Andermann, M. L., et al. Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron. 80 (4), 900-913 (2013).
  14. Chia, T. H., Levene, M. J. Microprisms for in vivo multilayer cortical imaging. J Neurophysiol. 102 (2), 1310-1314 (2009).
  15. Low, R. J., Gu, Y., Tank, D. W. Cellular resolution optical access to brain regions in fissures: Imaging medial prefrontal cortex and grid cells in entorhinal cortex. Proc Natl Acad Sci U S A. 111 (52), 18739-18744 (2014).
  16. Buxhoeveden, D. P., Casanova, M. F. The minicolumn hypothesis in neuroscience. Brain. 125, 935-951 (2002).
  17. Chen, S., et al. Miniature fluorescence microscopy for imaging brain activity in freely-behaving animals. Neurosci Bull. 36 (10), 1182-1190 (2020).
  18. Gulati, S., Cao, V. Y., Otte, S. Multi-layer cortical Ca2+ imaging in freely moving mice with prism probes and miniaturized fluorescence microscopy. J Vis Exp. (124), e55579 (2017).
  19. Resendez, S. L., et al. Visualization of cortical, subcortical, and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat Protoc. 11 (3), 566-597 (2016).
  20. Guo, Z. V., et al. Procedures for behavioral experiments in head-fixed mice. PLoS One. 9 (2), 88678 (2014).
  21. Wekselblatt, J. B., Flister, E. D., Piscopo, D. M., Niell, C. M. Large-scale imaging of cortical dynamics during sensory perception and behavior. J Neurophysiol. 115 (6), 2852-2866 (2016).
  22. Pnevmatikakis, E. A., et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron. 89 (2), 285-299 (2016).
  23. Zhou, P., et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. Elife. 7, 28728 (2018).
  24. Beckmann, L., et al. Longitudinal deep-brain imaging in mouse using visible-light optical coherence tomography through chronic microprism cranial window. Biomed Opt Express. 10 (10), 5235-5250 (2019).
  25. Wenzel, M., Hamm, J. P., Peterka, D. S., Yuste, R. Reliable and elastic propagation of cortical seizures in. Cell Rep. 19 (13), 2681-2693 (2017).
  26. Heys, J. G., Rangarajan, K. V., Dombeck, D. A. The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron. 84 (5), 1079-1090 (2014).
  27. Barson, D., Hamodi, A. S. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits. Nat Methods. 17 (1), 107-113 (2020).
  28. Paquelet, G. E., et al. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors. Neuron. 110 (16), 2664-2679 (2022).
  29. Yang, Q., et al. Transparent microelectrode arrays integrated with microprisms for electrophysiology and simultaneous two-photon imaging across cortical layers. bioRxiv. , (2022).
  30. Priestley, J. B., Bowler, J. C., Rolotti, S. V., Fusi, S., Losonczy, A. Signatures of rapid plasticity in hippocampal CA1 representations during novel experiences. Neuron. 110 (12), 1978-1992 (2022).
  31. Zong, W., et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods. 18 (1), 46-49 (2021).
  32. Engelbrecht, C. J., et al. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt Express. 16 (8), 5556-5564 (2008).
  33. Suzuki, M., Aru, J., Larkum, M. E. Double-μ Periscope, a tool for multilayer optical recordings, optogenetic stimulations or both. Elife. 10, 72894 (2021).
  34. Stibůrek, M., et al. 110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics. Nat Commun. 14 (1), 1897 (2023).
check_url/fr/65387?article_type=t

Play Video

Citer Cet Article
Burrows, R., Ma, C., Sun, Y. J. Long-Term Imaging of Identified Neural Populations using Microprisms in Freely Moving and Head-Fixed Animals. J. Vis. Exp. (203), e65387, doi:10.3791/65387 (2024).

View Video