Summary

Ex Vivo Cultivo de perfusión de grandes vasos sanguíneos en un biorreactor impreso en 3D

Published: July 28, 2023
doi:

Summary

Este protocolo presenta la configuración y el funcionamiento de un biorreactor impreso en 3D recientemente desarrollado para el cultivo ex vivo de vasos sanguíneos en perfusión. El sistema está diseñado para ser fácilmente adoptado por otros usuarios, práctico, asequible y adaptable a diferentes aplicaciones experimentales, como biología básica y estudios farmacológicos.

Abstract

Las enfermedades vasculares constituyen la base de la mayoría de las enfermedades cardiovasculares (ECV), que siguen siendo la principal causa de mortalidad y morbilidad en todo el mundo. Se necesitan urgentemente intervenciones quirúrgicas y farmacológicas eficaces para prevenir y tratar la enfermedad vascular. En parte, la escasez de modelos traslacionales limita la comprensión de los procesos celulares y moleculares implicados en la enfermedad vascular. Los biorreactores de cultivo de perfusión ex vivo proporcionan una plataforma ideal para el estudio de grandes vasos animales (incluidos los seres humanos) en un entorno dinámico controlado, combinando la facilidad del cultivo in vitro y la complejidad del tejido vivo. Sin embargo, la mayoría de los biorreactores se fabrican a medida y, por lo tanto, son difíciles de adoptar, lo que limita la reproducibilidad de los resultados. Este artículo presenta un sistema impreso en 3D que se puede producir y aplicar fácilmente en cualquier laboratorio biológico, y proporciona un protocolo detallado para su configuración, lo que permite la operación de los usuarios. Este innovador y reproducible sistema de cultivo de perfusión ex vivo permite el cultivo de vasos sanguíneos durante un máximo de 7 días en condiciones fisiológicas. Esperamos que la adopción de un biorreactor de perfusión estandarizado apoye una mejor comprensión de los procesos fisiológicos y patológicos en los vasos sanguíneos de animales grandes y acelere el descubrimiento de nuevas terapias.

Introduction

La pared vascular existe en un estado estacionario reactivo, lo que asegura tanto la responsabilidad a los estímulos externos (i.e., cambio de presión, vasoconstrictores) como una superficie consistente no activadora que impide la coagulación de la sangre y la infiltración de células inflamatorias1. En respuesta a estímulos dependientes del envejecimiento y del estilo de vida y ante el daño directo, la pared vascular activa procesos de remodelación como la reestenosis y la aterosclerosis, que se sabe que contribuyen a las enfermedades cardiovasculares (ECV) comunes, como el accidente cerebrovascular isquémico y el infarto de miocardio2. Si bien existen enfoques intervencionistas como la revascularización percutánea y la colocación de stents para abordar las manifestaciones avanzadas de la enfermedad vascular, se sabe que provocan un daño vascular adicional, lo que a menudo conduce a la recurrencia. Además, solo se dispone de soluciones preventivas y de fase inicial limitadas. La comprensión de los mecanismos que mantienen la homeostasis de la pared vascular y conducen a su disfunción es fundamental para el desarrollo de nuevas curas3.

A pesar del constante desarrollo y los avances en biología molecular e ingeniería de tejidos, los estudios con animales siguen siendo un componente crucial de los estudios de biología vascular. Los estudios in vivo en animales han proporcionado una enorme comprensión de los mecanismos de la homeostasis vascular y la patología; Sin embargo, estos procedimientos son costosos, tienen un rendimiento relativamente bajo y plantean problemas éticos sustanciales. Además, los animales pequeños son poco representativos de la fisiología vascular humana, y los experimentos con animales más grandes son mucho más caros y crean más consideraciones éticas 4,5. Con la creciente demanda de soluciones farmacéuticas y médicas para una población que envejece rápidamente, las desventajas del uso de animales se magnifican, lo que afecta la reproducibilidad, confiabilidad y transferibilidad de los resultados a la atención del paciente6.

Los sistemas in vitro ofrecen una plataforma simplificada para estudiar los mecanismos básicos, pero no recapitulan la complejidad de todo el tejido, las interacciones entre las células y la matriz extracelular, y las fuerzas mecánicas, que son determinantes críticos en el desarrollo de enfermedades vasculares7.

Los estudios ex vivo realizados en tejidos enteros mantenidos en entornos controlados artificialmente imitan la complejidad in vivo al tiempo que permiten investigaciones de rendimiento relativamente alto8. Dada la capacidad de controlar de cerca las condiciones de cultivo y el entorno, los modelos ex vivo permiten una amplia gama de estudios complejos y proporcionan una alternativa adecuada para reducir el uso de procedimientos animales en biología vascular. Los cultivos estáticos de anillos vasculares ofrecieron información interesante, pero no incorporaron el elemento hemodinámico crucial9. De hecho, el estudio del sistema vascular ex vivo plantea desafíos específicos relacionados con las muchas fuerzas dinámicas que se aplican a las células dentro de la pared de los vasos sanguíneos. Estímulos como el flujo luminal, la turbulencia, el esfuerzo cortante, la presión y la deformación de la pared impactan significativamente en la fisiopatología tisular10,11,12.

Los biorreactores de perfusión son esenciales para el estudio de la homeostasis y la remodelación vascular en respuesta a lesiones o cambios hemodinámicos13. Además, el cultivo de perfusión se puede utilizar para mejorar la maduración y durabilidad de los vasos sanguíneos de ingeniería tisular (TEBV), proporcionando alternativas adecuadas para los injertos vasculares14.

Los biorreactores de perfusión disponibles en el mercado tienen una flexibilidad y adaptabilidad limitadas y son costosos. En cambio, muchos de los biorreactores desarrollados internamente existentes son difíciles de replicar en otros laboratorios, debido a las descripciones limitadas y la falta de disponibilidad de componentes especialmente fabricados 7,8,9,10,11,12. Para superar estas limitaciones, hemos desarrollado recientemente un nuevo biorreactor (EasyFlow), que es económico de producir, se adapta a una amplia gama de tejidos y permite modificaciones relativamente sencillas para adaptarse a diferentes demandas de investigación13. El inserto está impreso en 3D y encaja como en la tapa de un tubo de centrífuga estándar de 50 ml. Su diseño modular y su fabricación en impresión 3D lo hacen accesible y reproducible en diferentes laboratorios, así como fácilmente modificable para adaptarse a diferentes necesidades científicas. Este protocolo describe el montaje y el funcionamiento básico del sistema de biorreactor en un entorno de perfusión arterial.

Protocol

Este protocolo describe el montaje y uso de un sistema compuesto por dos insertos EasyFlow (biorreactor): uno que representa la cámara de reacción (C), que contiene la muestra de arteria perfundida, y otro que funciona como un depósito de medio (R) (Figura 1 y Figura 2A). Las arterias carótidas se obtuvieron de lechones machos y hembras de 4-6 semanas de edad (6-12 kg) en el Instituto Pirbright, Reino Unido. Los procedimientos con animales se llevaron a cabo…

Representative Results

Este estudio ha establecido un sistema de perfusión versátil y asequible (EasyFlow)13. El diseño impreso en 3D del sistema facilita la adopción del sistema por parte de otros laboratorios y, por lo tanto, fomenta la reproducibilidad. El inserto de perfusión fabricado está alojado en un tubo de centrífuga de 50 ml, lo que crea un entorno aislado. Utilizando dos insertos de perfusión, se puede establecer un bucle de perfusión que contiene un depósito y una cáma…

Discussion

Los sistemas de perfusión vascular ex vivo constituyen una plataforma única para estudiar la función y el comportamiento de las células vasculares dentro de sus tejidos nativos en condiciones controladas, lo que permite la disección de procesos complejos como la remodelación vascular post-lesión22. Sin embargo, la mayoría de los biorreactores de los que se tiene noticia son sistemas de fabricación propia basados en componentes hechos a medida y, a menudo, son difíciles de replic…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Los autores desean agradecer al Centro de Patología Veterinaria de la Facultad de Medicina Veterinaria de la Universidad de Surrey por los servicios de histología. También agradecemos a los Dres. L. Dixon, A. Reis y M. Henstock del Instituto Pirbright (Pirbright, Reino Unido) por su apoyo en la obtención de los tejidos animales, y al Departamento de Ciencias Bioquímicas de la Universidad de Surrey, especialmente al equipo técnico, por su continuo apoyo. RSM fue apoyado por el premio de beca del Colegio de Doctorado (Universidad de Surrey), DM y PC fueron apoyados por el Centro Nacional para el Reemplazo, Refinamiento y Reducción de Animales en Investigación (números de subvención: NC/R001006/1 y NC/T001216/1).

Materials

EasyFlow 3D printed by MultiJet Fusion by Protolabs
PA12 – 3D printing Protolabs
Peristaltic pump Heidolph  PD5201
Culture media components:
Amphotericin B solution, 250 mug/mL in deionized water Sigma-Aldrich A2942-20ML
Dextran  from Leuconostoc spp. Sigma-Aldrich D8802-25ML
Dulbecco's Modified Eagle's Medium – high glucose, w/ 4500 mg/L glucose, L-glutamine, sodium pyruvate, and sodium bicarbonate Sigma-Aldrich D6429-6X500ML
Fetal Bovine Serum Sigma-Aldrich F9665
Penicillin-Streptomycin Sigma-Aldrich P4333-100ML
Immunostaining materials:
Cryostat LEICA CM3050 S
DAPI Sigma-Aldrich D9542-10MG
Goat serum Sigma-Aldrich G9023-10ML
Goat α-Rabbit Alexa Fluor 488 Thermo Fisher Scientific A11008
Invitrogen eBioscience Fluoromount G Thermo Fisher Scientific 50-187-88
MX35 Premier + Microtome Blade Thermo Scientific 3052835
Optimal Cooling Tempearure Compound – OCT Agar Scientific AGR1180
Rabbit α-CD31 antibody Abcam ab28364
Sudan Black B Santa Cruz Biotechnology SC-203760
X72 SuperFrost Plus Adhesion slide, 25x75x1mm, White, 90° Ground Edges, Frosted Area 20mm, 72/box Fisher Scientific J1800AMNZ
α-Smooth Muscle Actin (SMA) Alexa Fluor® 647-conjugated antibody R&D Systems IC1420R
Material for laser cutting of components:
Clear Plastic Sheet, 1250 mm x 610 mm x 1 mm (for laser cutting of  washers) RS Components 258-6590
RS PRO Translucent Rubber Sponge Sheet, 600 mm x 600 mm x 1.5 mm (for laser cutting of  silicone seals) RS Components 840-5541
Optional pressure monitors:
Pressure sensor Parker Hannifin 080-699PSX-3P-5
SciPres Pressure Monitor Parker Hannifin 206-200-M
Pre-sterilized single use plasticware:
0.2 um filter Sarstedt 70.1114.210
20 mL Sterile syringe IMS Euro 40004
50 mL Centrifuge Tube Thermo Fisher Scientific Sarstedt – 62.547.254
Small components:
Cable ties
Masterflex Adapter Fittings, Female Luer to Hose Barb Cole-Parmer WZ-30800-10 Barb Adaptor
Masterflex Polycarbonate Luer Fittings Cole-Parmer AU-45504-84
Nylon Miniature Check Valve Cole-Parmer 98553-00
RS PRO Translucent Rubber Sponge Sheet, 600 mm x 600 mm x 1.5 mm (for laser cutting of  silicone seals) RS Components 840-5541
Stainless Steel M2 Hex Nuts RS Components 527-218
Stainless Steel M2 x 6 mm Screws RS Components 418-7426
Stainless Steel M5 Hex Nuts RS Components 189-585
Surgical vessel loop Vascular Silicone Ties,International Medical Supplies  10-1003
Three-way valves IMS Euro  91000
Surgical Equipment
Anatomical Forceps, GRAEFE, Curved, 10 cm SKU: BD-07 International Medical Supplies SKU: BD-07
Micro Forceps, Angled, 0.3 mm, 11 cm International Medical Supplies SKU: BD-361
Micro Scissors Noyes, Curved, 12 cm International Medical Supplies SKU: FD-12
Troge Surgical Scalpels – Size 23 – Box of 100 International Medical Supplies 63114
Tubing:
Eppendorf silicone tubing (I.D.1.6 mm, O.D.4.7 mm) Eppendorf M0740-2396 System tubing
Masterflex PharMed BPT 3-Stop Tubing ISMATEC 95714-48 Soft wall tubing (for clamp)
RS PRO Transparent Hose Pipe, 0.8 mm ID, Silicone RS Components 667-8432 Resistance tubing (small inner diameter)
Tygon for food (I.D. 4.8 mm, W.T. 1.6 mm) Heidolph 525-30027-00-0 One way valve tube
Verderflex Yellow Hose Pipe, 6.4 mm ID, Verderprene RS Components 125-4042 Pump Tubing

References

  1. Davies, P. F., Civelek, M., Fang, Y., Fleming, I. The atherosusceptible endothelium: Endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovascular Research. 99 (2), 315-327 (2013).
  2. Gugliandolo, E., et al. Palmitoylethanolamide and Polydatin combination reduces inflammation and oxidative stress in vascular injury. Pharmacological Research. 123, 83-92 (2017).
  3. Anselmino, M., et al. Catheter ablation of atrial fibrillation in patients with left ventricular systolic dysfunction: A systematic review and meta-analysis. Circulation, Arrhythmia, and Electrophysiology. 7 (6), 1011-1018 (2014).
  4. Viola, M., et al. Subcutaneous delivery of monoclonal antibodies: How do we get there. Journal of Controlled Release. 286, 301-314 (2018).
  5. Kim, D. D. In vitro cellular models for nasal drug absorption studies. Drug Absorption Studies: In Situ, In Vitro and In Silico Models. , 216-234 (2008).
  6. Lewis, D. I. Animal experimentation: Implementation and application of the 3Rs. Emerging Topics in Life Sciences. 3 (6), 675-679 (2019).
  7. Rouwkema, J., et al. In vitro platforms for tissue engineering: Implications for basic research and clinical translation. Journal of Tissue Engineering and Regenerative Medicine. 5 (8), e164-167 (2011).
  8. Xu, Y., Shrestha, N., Préat, V., Beloqui, A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Advanced Drug Delivery Reviews. 175, 113795 (2021).
  9. Vaghela, R., et al. Vessel grafts for tissue engineering revisited-Vessel segments show location-specific vascularization patterns in ex vivo ring assay. Microcirculation. 29 (2), e12742 (2022).
  10. Håkansson, J., et al. Individualized tissue-engineered veins as vascular grafts: A proof of concept study in pig. Journal of Tissue Engineering and Regenerative Medicine. 15 (10), 818-830 (2021).
  11. Saucy, F., et al. Ex vivo pulsatile perfusion of human saphenous veins induces intimal hyperplasia and increased levels of the plasminogen activator inhibitor 1. European Surgical Research. 45 (1), 50-59 (2010).
  12. Tosun, Z., McFetridge, P. S. Variation in cardiac pulse frequencies modulates vSMC phenotype switching during vascular remodeling. Cardiovascular Engineering and Technology. 6 (1), 59-70 (2015).
  13. Matos, R. S., Maselli, D., McVey, J. H., Heiss, C., Campagnolo, P. 3D printed bioreactor enabling the pulsatile culture of native and angioplastied large arteries. Frontiers in Cardiovascular Medicine. 9, 864580 (2022).
  14. Neff, L. P., et al. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. Journal of Vascular Surgery. 53 (2), 426-434 (2011).
  15. Boparai, K. S., Singh, R. Advances in Fused Deposition Modeling. In: Module. Refrence in Materials Science and Materials Engineering. , (2017).
  16. McKeen, L. W., McKeen, L. W. Chapter 6 – Polyamides (Nylons). The Effect of Creep and Other Time Related Factors on Plastics and Elastomers (Second Edition). , 197-262 (2012).
  17. Moradi, M., Mehrabi, O., Azdast, T., Benyounis, K. Y. Enhancement of low power CO2 laser cutting process for injection molded polycarbonate). Optics & Laser Technology. 96, 208-218 (2017).
  18. Ghasem, N. . Computer Methods in Chemical Engineering. , (2021).
  19. Lying, F., Gazi, F., Gardner, E. Preparation of tissues and cells for infrared and raman spectroscopy and imaging. Biomedical Applications of Synchrotron Infrared Microspectroscopy.RSC Analytical Spectroscopy Monographs. (11), 147-185 (2011).
  20. Sassi, L., et al. A perfusion bioreactor for longitudinal monitoring of bioengineered liver constructs. Nanomaterials. 11 (2), 275 (2021).
  21. Haykal, S., et al. Double-chamber rotating bioreactor for dynamic perfusion cell seeding of large-segment tracheal allografts: Comparison to conventional static methods. Tissue Engineering. Part C, Methods. 20 (8), 681-692 (2014).
  22. Kural, M. H., Dai, G., Niklason, L. E., Gui, L. An ex vivo vessel injury model to study remodeling. Cell Transplant. 27 (9), 1375-1389 (2018).
  23. Wong, M. M., Hong, X., Karamariti, E., Hu, Y., Xu, Q. Generation and grafting of tissue-engineered vessels in a mouse model. Journal of Visualized Experiments. (97), 52565 (2015).
  24. Alvino, V. V., et al. In vitro and in vivo preclinical testing of pericyte-engineered grafts for the correction of congenital heart defects. Journal of the American Heart Association. 9 (4), e014214 (2020).
  25. Nerurkar, N. L., Sen, S., Baker, B. M., Elliott, D. M., Mauck, R. L. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomaterialia. 7 (2), 485-491 (2011).
  26. Engebretson, B., Mussett, Z. R., Sikavitsas, V. I. The effects of varying frequency and duration of mechanical stimulation on a tissue-engineered tendon construct. Connective Tissue Research. 59 (2), 167-177 (2018).
  27. Saunders, S. K., et al. Evaluation of perfusion-driven cell seeding of small diameter engineered tissue vascular grafts with a custom-designed seed-and-culture bioreactor. PLoS One. 17 (6), e0269499 (2022).
  28. Stephenson, M., Grayson, W. Recent advances in bioreactors for cell-based therapies. F1000Research. 7, (2018).
check_url/fr/65465?article_type=t

Play Video

Citer Cet Article
Matos, R. S., Jawad, A. J., Maselli, D., McVey, J. H., Heiss, C., Campagnolo, P. Ex Vivo Perfusion Culture of Large Blood Vessels in a 3D Printed Bioreactor. J. Vis. Exp. (197), e65465, doi:10.3791/65465 (2023).

View Video